103 resultados para techniques: spectroscopic
Resumo:
Oxidation of ethanol on ruthenium-modified Pt(775) and Pt(332) stepped electrodes has been studied using electrochemical and FTIR techniques. It has been found that the oxidation of ethanol on these electrodes takes place preferentially on the step sites yielding CO(2) as the major final product. The cleavage of the C-C bond, which is the required step to yield CO(2), occurs only on this type of site. The presence of low ruthenium coverages on the step sites promotes the complete oxidation of ethanol since it facilitates the oxidation of CO formed on the step from the cleavage of the C-C bond. However, high ruthenium coverages have an important inhibiting effect since the adatoms block the step sites, which are required for the cleavage of the C-C bond. Under these conditions, the oxidation current diminishes and the major product in the oxidation process is acetic acid, which is the product formed preferentially on the (111) terrace sites.
Resumo:
This work investigates the formation of self-assembled monolayers (SAMs) of cystamine and cystamine-glutaraldehyde on a screen-printed electrode, and the immobilization of the Tc85 protein (from Trypanosoma cruzi) on these monolayers. The methods used included infrared techniques, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical studies were performed at pH 6.9 in 0.1 mol L(-1) phosphate buffer solution containing Fe(CN)(6)(-3/-4) redox species. The surface coverage (0) of the electrode was 0.10 (cystamine), 0.35 (cystamine-glutaraldehyde) and 0.84 (Tc85). Interpretation of electrochemical impedance spectroscopy results was based on a charge-transfer reaction involving Fe(CN)(6)(-3/-4) species at high frequencies, followed by a diffusion through the monolayers at lower frequencies. Estimates of the electrode surface coverage, active site radius, and distance between two adjacent sites assumed that charge transfer occurred at the active sites, and that there was a planar diffusion of redox species to these sites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fluorescence quenching of meso-tetrakis-4-sulfonatophenyl (TPPS4) and meso-tetrakis-4-N-methylpyridil (TMPyP) porphyrins is studied in aqueous solution and upon addition of micelles of sodium dodecylsulfate (SDS), cetyltrimethylammonium chloride (CTAC), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and t-octylphenoxypolyethoxyethanol (Triton X-100). Potassium iodide (KI) was used as quencher. Steady-state Stern-Volmer plots were best fitted by a quadratic equation, including dynamic (K-D) and static (K-s) quenching. Ks was significantly smaller than K-D. Frequency-domain fluorescence lifetimes allowed estimating bimolecular quenching constants, k(q). At 25 degrees C, in aqueous solution, TMPyP shows k(q), values a factor of 2-3 higher than the diffusional limit. TPPS4 shows collisional quenching with pH dependent k(q) values. For TMPyP quenching results are consistent with reported binding constants: a significant reduction of quenching takes place for SDS, a moderate reduction is observed for H PS and almost no change is seen for Triton X-100. Similar data were obtained at 50 C. For CTAC-TPPS4 system an enhancement of quenching was observed as compared to pure buffer. This is probably associated to accumulation of iodide at the cationic micellar interface. The attraction between CTAC headgroups and 1(-), and repulsion between SDS and 1(-), enhances and reduces the fluorescence quenching, respectively, of porphyrins located at the micellar interface. The small quenching of TPPS4 in Triton X-100 is consistent with strong binding as reported in the literature. (C) 2008 Elsevier B.V. All rights reserved.
Spectroscopic investigation of the interactions between emeraldine base polyaniline and Eu(III) ions
Resumo:
The interactions of emeraldine base form of polyaniline (EB-PANI) and Eu(III) ions in 1-methyl-2-pyrrolidinone (NMP) solution and in films have been investigated by UV-vis-NIR, resonance Raman. luminescence and electron paramagnetic resonance (EPR) spectroscopies. These spectroscopic techniques allowed to characterize quinone and semiquinone segments in the polymeric chains. and the oxidation state of europium ions in Eu-PANI samples. For high values of Eu(III)/N molar ratio (24/1) the presence of a weak polaronic absorption band at 980 nm in UV-vis-NIR spectrum and the observation of bands at 1330 and 1378 (nu(center dot)(C-N+)) cm(-1) due to emeraldine salt in the Raman spectrum at 1064 nm indicate a low doping degree. Oxidation of EB-PANI to pernigraniline base (PB-PANI) occurs in diluted solutions. The experimental data showed that the solvent plays an important role on the nature of formed species. The narrow EPR signal at g = 2.006 (line width 8G) confirms the presence of PANI radical cations in Eu-PANI film. The absence of broad signal characteristic of Eu(II) in EPR spectrum suggested that europium ions are primarily at Eu(III) oxidation state. The luminescence spectra of Eu-PANI film presented emission bands at 405 and 418 nm assigned to PANI moieties and bands at 594,615 and 701 nm assigned to (5)D(0) -> (7)F(J) (J = 1, 2 and 4, respectively) transitions of Eu(III). EPR and photoluminescence data confirm that europium ions are mainly in Eu(III) oxidation state in Eu(III)/PANI films. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, the electronic and structural characterization of polyaniline (PANI) formed in cavities of zeolites Y (ZY) and Mordenite (MOR) and montmorillonite (MMT) clay having Cu(II) as oxidant agent are presented. The formation of PANI and its structure is analyzed by Resonance Raman, UV-Vis-NIR, FT-IR and N K XANES techniques. In all cases the structure of PANT formed is different from the ""free"" polymer. The presence of azo bonds linked to phenazine-like rings are observed only for PANI-MMT composites, independent of the kind of oxidant agent employed in the synthesis. The presence of Cu(II) ions leads to the formation of Phenosafranine-like rings. The presence of these phenazine-like rings in the structure of confined PANT chains can also contribute to the enhancement of the thermal stability observed for all composites. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
For the first time, the resonance Raman spectroscopy was used to characterize polymers derived from meta- and para-nitroanilines. In order to improve the polymer structure analysis, other techniques were also used such as FTIR, UV-vis, XRD, XPS, EPR and N K-XANES. The insertion of strong electron-withdrawing groups (NO2) in polyaniline (PANI)-like backbone causes drastic changes in the lower energy charge transfer states, related to the polymer effective conjugation length. The resonance Raman data show that the NO2 moiety has a minor contribution on the CT state in poly(meta-nitroaniline), PMN, while in the poly(para-nitroaniline), PPN, the quinoid structure induced by para-substitution increases the charge density of NO2 groups, causing a more localized chromophore. The characterization of the imine nitrogen and of the protonated segments was done by XPS, N K-XANES and EPR spectroscopies and the lower polymerization degree of PPN, in comparison to PMN, is confirmed by XRD and TG data. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The thermal behavior of PANI nanofibers doped with beta-naphthalenesulfonic acid (beta-NSA) was investigated and their morphological and structural changes after heating were monitored by SEM, XRD and Raman techniques, respectively. By using electron-scanning microscopy it is possible to verify that the nanofiber morphology is stable and no polymer degradation is observed in thermogravimetric (TG) data up to 200 degrees C. Nevertheless, the heating promotes the formation of cross-linking structures (phenazine and/or oxazine-like rings), that is clearly demonstrated by the presence of bands at ca. 578, 1398, and 1644 cm(-1) in resonance Raman spectra of heated PANI-NSA samples. The most important consequence of the formation of cross-linking structures in PANI-NSA samples is that these samples retain their nanofiber morphology upon HCl doping in contrast to PANI-NSA nanofibers without heating. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: Maxillary sinus lifting is a technique, in which, a possible complication is sinus membrane perforation. The aim of this study was to compare two techniques using ultrasound surgery to perform autogenous graft for maxillary sinus lifting. METHODS: Ten rabbits were used in the study, one of them did not undergo surgery. The other nine rabbits had their maxillary sinuses filled with autogenous bone grafts collected from the external skull diploe in particulate form on the right side, and shaved on the left side, both with ultrasonic device. Data on bone density in left and right maxillary sinus, obtained by computed tomography in transverse and longitudinal sections, recorded 90 days after the grafts, were statistically compared. RESULTS: There were no statistically significant differences between the two techniques that used shaved and particulate bone collected by means of ultrasonic device from rabbit skulls. CONCLUSION: Assessment of operative procedures led to the conclusion that piezoelectric ultrasound was shown to be a safe tool in the surgical approach to the maxillary sinus of rabbits, allowing sinus membrane integrity to be maintained during surgical procedures.
Resumo:
In this work we have studied cyclooctene epoxidation with PhIO, using a new iron porphyrin, 5,10,15,20-tetrakis(2-hydroxy-5-nitrophenyl)porphyrinato iron(III), supported on silica matrices via eletrostatic interaction and / or covalent bonds as catalyst. These catalysts were obtained and immobilized on the solid supports propyltrimethylammonium silica (SiN+); propyltrimethylammonium and propylimidazole silica [SiN+(IPG)] and chloropropylsilica (CPS) via elestrostatic interactions and covalent binding. Characterization of the supported catalysts by UV-Vis spectroscopy and EPR (Electron paramagnetic resonance) indicated the presence of a mixture of FeII and FeIII species in all of the three obtained catalysts. In the case of (Z)-cyclooctene epoxidation by PhIO the yields observed for cis-epoxycyclooctane were satisfactory for the reactions catalyzed by the three materials (ranging from 68% to 85%). Such results indicate that immobilization of metalloporphyrins onto solid supports via groups localized on the ortho positions of their mesophenyl rings can lead to efficient catalysts for epoxidation reactions. The catalyst 1-CPS is less active than 1-SiN and 1-SiN(IPG), this argues in favour of the immobilization of this metalloporphyrin onto solids via electrostatic interactions, which is easier to achieve and results in more active oxidation catalysts. Interestingly, the activity of the supported catalysts remained the same even after three successive recyclings; therefore, they are stable under the oxidizing conditions.
Resumo:
A practical method for the structural assignment of 3,4-O-benzylidene-D-ribono-1,5-lactones and analogues using conventional NMR techniques and NOESY measurements in solution is described. 2-O-Acyl-3,4-O-benzylidene-D-ribono-1,5-lactones were prepared in good yields by acylation of Zinner’s lactone with acyl chlorides under mildly basic conditions. Structural determination of 2-O-(4-nitrobenzoyl)-3,4-O-benzylidene-D-ribono-1,5-lactone was achieved by single crystal x-ray diffraction, which supports the results based on spectroscopic data.
Resumo:
The present research deals with two mural paintings made in 1947 with the fresco technique by Fulvio Pennacchi in the Catholic Chapel of the Hospital das Clínicas (São Paulo City, Brazil), namely the Virgin Annunciation and the Supper at Emmaus. This study regards the materials and painting techniques used by the artist, based on historical research,on in situ observations and laboratory analytical techniques (stereomicroscopy,scanning electron microscopy with an energy dispersive spectrometer, X-ray diffractometry, electron microprobe, images obtained with UV-light), aiming to improve the methods of characterization of objects of our cultural heritage, and to enhance its preservation accordingly. The results lead to the identification of the plaster components and of distinct layers in the frescoes, besides further information on grain size, impurities and textures, composition of pigments, and features of deterioration, such as efflorescences. The degree of degradation of the murals painting was assessed by this way. Our data suggest that a single layer of plaster was used by Pennacchi, as a common mortar with fine- and medium-grained aggregates. Differences in texture were obtained by adding gypsum to the plaster.
Resumo:
Iodine vapor is a very suitable substance to learn about molecular energy levels and transitions, and to introduce spectroscopic techniques. As a diatomic molecule its spectra are relatively simple and allow straightforward treatment of the data leading to the potential energy curves and to quantum mechanics concepts. The overtone bands, in the resonance Raman scattering, and the band progressions, in the electronic spectra, play an important role in the calculation of the Morse potential curves for the fundamental and excited electronic state. A weaker chemical bond in the electronic excited state, compared to the fundamental state, is evidenced by the increase in the equilibrium interatomic distance. The resonance Raman scattering of I2 is highlighted due to its importance for obtaining the anharmonicity constant in the fundamental electronic state.
Resumo:
A new tetraruthenated copper(II)-tetra(3,4-pyridyl)porphyrazine species, [CuTRPyPz]4+, has been synthesized and fully characterized by means of analytical, spectroscopic and electrochemical techniques. This À-conjugated system contrasts with the related meso-tetrapyridylporphyrins by exhibiting strong electronic interaction between the coordinated peripheral complexes and the central ring. Based on favorable À-stacking and electrostatic interactions, layer-by-layer assembled films were successfully generated from the appropriate combination of [CuTRPyPz]4+ with copper(II)-tetrasulfonated phtalocyanine, [CuTSPc]4-. Their conducting and electrocatalytic properties were investigated by means of impedance spectroscopy and rotating disc voltammetry, exhibiting metallic behavior near the Ru(III/II) redox potential, as well as enhanced catalytic activity for the oxidation of nitrite and sulphite ions.
Resumo:
This paper presents the study of photochemical behavior of polycyclic aromatic hydrocarbons (PAHs), potential pollutants in secondary reactions in aerosols, through Raman spectroscopy compared with its electrochemical behavior. The PAHs studied include pyrene, anthracene, phenanthrene and fluorene. These were adsorbed onto TiO2 and irradiated with ultraviolet light (254 nm). Their electrochemical oxidation was studied by in situ Surface-enhanced Raman Scattering (SERS) and led to the formation of carbonyl-containing products. Oxidized intermediates bearing the C=O group were also formed during photodegradation. The joint analysis of the photodegradation data with those produced by electrochemical means - using spectroscopic techniques for the identification and characterization of the products - revealed the formation of identical products for anthracene, but not for pyrene. A reasonable explanation for this difference in results is that photochemical and electrochemical oxidation reactions proceed via different mechanisms. While photocatalytic degradation over TiO2 is initiated by hydroxyl radicals, electrochemical oxidation is initiated by the direct electron transfer from adsorbed PAH to the electrode, generating PAH cation radicals that undergo subsequent reactions.