114 resultados para solution structures
Resumo:
The energy spectrum of an electron confined in a quantum dot (QD) with a three-dimensional anisotropic parabolic potential in a tilted magnetic field was found analytically. The theory describes exactly the mixing of in-plane and out-of-plane motions of an electron caused by a tilted magnetic field, which could be seen, for example, in the level anticrossing. For charged QDs in a tilted magnetic field we predict three strong resonant lines in the far-infrared-absorption spectra.
Resumo:
The results on the measurement of electrical conductivity and magnetoconductivity of a GaAs double quantum well between 0.5 and 1.1 K are reported. The zero magnetic-field conductivity is well described from the point of view of contributions made by both the weak localization and electron-electron interaction. At low field and low temperature, the magnetoconductivity is dominated by the weak localization effect only. Using the weak localization method, we have determined the electron dephasing times tau(phi) and tunneling times tau(t). Concerning tunneling, we concluded that tau(t) presents a minimum around the balance point; concerning dephasing, we observed an anomalous dependence on temperature and conductivity (or elastic mean free path) of tau(phi). This anomalous behavior cannot be explained in terms of the prevailing concepts for the electron-electron interaction in high-mobility two-dimensional electron systems.
Resumo:
The longitudinal resistivity rho(xx) of two-dimensional electron gases formed in wells with two subbands displays ringlike structures when plotted in a density-magnetic-field diagram, due to the crossings of spin-split Landau levels (LLs) from distinct subbands. Using spin density functional theory and linear response, we investigate the shape and spin polarization of these structures as a function of temperature and magnetic-field tilt angle. We find that (i) some of the rings ""break'' at sufficiently low temperatures due to a quantum Hall ferromagnetic phase transition, thus exhibiting a high degree of spin polarization (similar to 50%) within, consistent with the NMR data of Zhang et al. [Phys. Rev. Lett. 98, 246802 (2007)], and (ii) for increasing tilting angles the interplay between the anticrossings due to inter-LL couplings and the exchange-correlation effects leads to a collapse of the rings at some critical angle theta(c), in agreement with the data of Guo et al. [Phys. Rev. B 78, 233305 (2008)].
Resumo:
Transparent conducting oxides (TCO) are widely used in technological applications ranging from photovoltaics to thin-film transparent field-effect transistors. In this work we report a first-principles investigation, based on density-functional theory, of the atomic and electronic properties of Ga(2)O(3)(ZnO)(6) (GZO(6)), which is a promising candidate to be used as host oxide for wide band gap TCO applications. We identify a low-energy configuration for the coherent distribution of the Ga and Zn atoms in the cation positions within the experimentally reported orthorhombic GZO(6) structure. Four Ga atoms are located in four-fold sites, while the remaining 12 Ga atoms in the unit cell form four shared Ga agglomerates (a motif of four atoms). The Zn atoms are distributed in the remaining cation sites with effective coordination numbers from 3.90 to 4.50. Furthermore, we identify the natural formation of twin-boundaries in GZO(6), which can explain the zigzag modulations observed experimentally by high-resolution transmission electron microscopy in GZO(n) (n=9). Due to the intrinsic twin-boundary formation, polarity inversion in the ZnO tetrahedrons is present which is facilitated by the formation of the Ga agglomerates. Our analysis shows that the formation of fourfold Ga sites and Ga agglomerates are stabilized by the electronic octet rule, while the distribution of Ga atoms and the formation of the twin-boundary help alleviate excess strain. Finally we identify that the electronic properties of GZO(6) are essentially determined by the electronic properties of ZnO, i.e., there are slight changes in the band gap and optical absorption properties.
Resumo:
In this work we study some properties of the differential complex associated to a locally integrable (involutive) structure acting on forms with Gevrey coefficients. Among other results we prove that, for such complexes, Gevrey solvability follows from smooth solvability under the sole assumption of a regularity condition. As a consequence we obtain the proof of the Gevrey solvability for a first order linear PDE with real-analytic coefficients satisfying the Nirenberg-Treves condition (P).
Resumo:
Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 angstrom X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7(XAC2622)) and its interaction with VirB9. NMR solution studies show that residues 27-41 of the disordered flexible N-terminal region of VirB7(XAC2622) interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7(XAC2622) has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7(XAC2622) oligomerizes through interactions involving conserved residues in the N0 domain and residues 42-49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB(7XAC2622) oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring.
Resumo:
We have investigated the stability, electronic properties, Rayleigh (elastic), and Raman (inelastic) depolarization ratios, infrared and Raman absorption vibrational spectra of fullerenols [C(60)(OH)(n)] with different degrees of hydroxylation by using all-electron density-functional-theory (DFT) methods. Stable arrangements of these molecules were found by means of full geometry optimizations using Becke's three-parameter exchange functional with the Lee, Yang, and Parr correlation functional. This DFT level has been combined with the 6-31G(d,p) Gaussian-type basis set, as a compromise between accuracy and capability to treat highly hydroxylated fullerenes, e.g., C(60)(OH)(36). Thus, the molecular properties of fullerenols were systematically analyzed for structures with n=1, 2, 3, 4, 8, 10, 16, 18, 24, 32, and 36. From the electronic structure analysis of these molecules, we have evidenced an important effect related to the weak chemical reactivity of a possible C(60)(OH)(24) isomer. To investigate Raman scattering and the vibrational spectra of the different fullerenols, frequency calculations are carried out within the harmonic approximation. In this case a systematic study is only performed for n=1-4, 8, 10, 16, 18, and 24. Our results give good agreements with the expected changes in the spectral absorptions due to the hydroxylation of fullerenes.
Resumo:
Background: The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results: In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS) experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413) follows a stoichiometry of 1:1. The binding constant (KB) observed for RACK1-Ki-1/57(122-413) interaction was of around (1.5 +/- 0.2) x 10(6) M(-1) and resulted in a dissociation constant (KD) of (0.7 +/- 0.1) x 10(-6) M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion: Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413) interact strongly under the tested conditions.
Resumo:
Platinum plays an important role in catalysis and electrochemistry, and it is known that the direct interaction of oxygen with Pt surfaces can lead to the formation of platinum oxides (PtO(x)), which can affect the reactivity. To contribute to the atomistic understanding of the atomic structure of PtO(x), we report a density functional theory study of the atomic structure of bulk PtO(x) (1 <= x <= 2). From our calculations, we identified a lowest-energy structure (GeS type, space group Pnma) for PtO, which is 0.181 eV lower in energy than the structure suggested by W. J. Moore and L. Pauling [J. Am. Chem. Soc. 63, 1392 (1941)] (PtS type). Furthermore, two atomic structures were identified for PtO(2), which are almost degenerate in energy with the lowest-energy structure reported so far for PtO(2) (CaCl(2) type). Based on our results and analysis, we suggest that Pt and O atoms tend to form octahedron motifs in PtO(x) even at lower O composition by the formation of Pt-Pt bonds.
Resumo:
The cuticular surfaces of Cyphophthalmi (Opiliones) were studied in detail, covering a wide range of their taxonomic diversity. Previously unknown structures are described, including a sexually dimorphic row of spines and glandular openings on leg I of Fangensis cavernarum. Scanning electron micrographs of the prosomal paired hairs and the subapical process are provided for the first time. Evidence for the multi-pored nature of the shaft of solenidia as well as the hollowed nature and absence of wall pores of sensilla chaetica are also shown for the first time using scanning electron microscopy. The prosomal paired hairs may constitute a novel autapomorphy for Cyphophthalmi, as they are absent in all studied members of the other species of Opiliones. Finally, the variation in shape of some of the structures examined may be of great taxonomic value.
Resumo:
The synthetic hydrous niobium oxide has been used for phosphate removal from the aqueous solutions. The kinetic data correspond very well to the pseudo second-order equation The phosphate removal tended. to increase with a decrease of pH. The equilibrium data describe very well the Langmuir isotherm. The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The adsorption capacities are high, and increased with increasing temperature. The evaluated Delta G degrees and Delta H degrees indicate the spontaneous and endothermic nature of the reactions. The adsorptions occur with increase in entropy (Delta S positive) value suggest increase in randomness at the solid-liquid interface during the adsorption. A phosphate desorbability of approximately 60% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nyvlt method Was used to determine the kinetic parameters of commercial xylitol in ethanol:water (50:50 %w/w) Solution by batch cooling crystallization. The kinetic exponents (n, g and in) and the system kinetic constant (B(N)) were determined. Model experiments were carried Out in order to verify the combined effects of saturation temperatures (40, 50 and 60 degrees C) and cooling rates (0.10, 0.25 and 0.50 degrees C/min) on these parameters. The fitting between experimental and Calculated crystal sizes has 11.30% mean deviation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The adsorption kinetics of phosphate onto Nb(2)O(5)center dot nH(2)O was investigated at initial phosphate concentrations 10 and 50 mg L(-1). The kinetic process was described by a pseudo second-order rate model very well. The adsorption thermodynamics was carried out at 298, 308, 318, 328 and 338 K. The positive values of both Delta H and Delta S suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G values obtained were negative indicating a spontaneous adsorption process. The Langmuir model described the data better than the Freundlich isotherm model. The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The effective desorption could be achieved using water at pH 12. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The principal aim of studies of enzyme-mediated reactions has been to provide comparative and quantitative information on enzyme-catalyzed reactions under distinct conditions. The classic Michaelis-Menten model (Biochem Zeit 49:333, 1913) for enzyme kinetic has been widely used to determine important parameters involved in enzyme catalysis, particularly the Michaelis-Menten constant (K (M) ) and the maximum velocity of reaction (V (max) ). Subsequently, a detailed treatment of the mechanisms of enzyme catalysis was undertaken by Briggs-Haldane (Biochem J 19:338, 1925). These authors proposed the steady-state treatment, since its applicability was constrained to this condition. The present work describes an extending solution of the Michaelis-Menten model without the need for such a steady-state restriction. We provide the first analysis of all of the individual reaction constants calculated analytically. Using this approach, it is possible to accurately predict the results under new experimental conditions and to characterize and optimize industrial processes in the fields of chemical and food engineering, pharmaceuticals and biotechnology.
Resumo:
The kinetics of the solution free radical polymerization of N-vinylcaprolactam, in 1,4-dioxane and under various polymerization conditions was studied. Azobisisobutyronitrile and 3-mercaptopropionic acid were used as initiator and as chain transfer agent (CTA), respectively. The influence of monomer and initiator concentrations and polymerization temperature on the rate of polymerizations (R(p)) was investigated. In general, high conversions were obtained. The order with respect to initiator was consistent with the classical kinetic rate equation, while the order with respect to the monomer was greater than unity. The overall activation energy of 53.6 kJ mol(-1) was obtained in the temperature range 60-80 degrees C. The decreasing of the absolute molecular weights when increasing the CIA concentration was confirmed by GPC/SEC/LALS analyses. It was confirmed by UV-visible analyses the effect of molecular weights on the lower critical solution temperature of the polymers. It was also verified that the addition of the CTA influenced the kinetic of the polymerizations. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 118: 229-240, 2010