214 resultados para root ingrowth core
Resumo:
We report a new STAR measurement of the longitudinal double-spin asymmetry A(LL) for inclusive jet production at midrapidity in polarized p+p collisions at a center-of-mass energy of root s = 200 GeV. The data, which cover jet transverse momenta 5 < p(T) < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit to polarized deep-inelastic scattering measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit to polarized deep-inelastic scattering measurements.
Resumo:
We present the first spin alignment measurements for the K*(0)(892) and phi(1020) vector mesons produced at midrapidity with transverse momenta up to 5 GeV/c at root s(NN) = 200 GeV at RHIC. The diagonal spin-density matrix elements with respect to the reaction plane in Au+Au collisions are rho(00) = 0.32 +/- 0.04 (stat) +/- 0.09 (syst) for the K*(0) (0.8 < p(T) < 5.0 GeV/c) and rho(00) = 0.34 +/- 0.02 (stat) +/- 0.03 (syst) for the phi (0.4 < p(T) < 5.0 GeV/c) and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector-meson spins. Spin alignments for K(*0) and phi in Au+Au collisions were also measured with respect to the particle's production plane. The phi result, rho(00) = 0.41 +/- 0.02 (stat) +/- 0.04 (syst), is consistent with that in p+p collisions, rho(00) = 0.39 +/- 0.03 (stat) +/- 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.
Resumo:
We present STAR results on the elliptic flow upsilon(2) Of charged hadrons, strange and multistrange particles from,root s(NN) = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). The detailed study of the centrality dependence of upsilon(2) over a broad transverse momentum range is presented. Comparisons of different analysis methods are made in order to estimate systematic uncertainties. To discuss the nonflow effect, we have performed the first analysis Of upsilon(2) with the Lee-Yang zero method for K(S)(0) and A. In the relatively low PT region, P(T) <= 2 GeV/c, a scaling with m(T) - m is observed for identified hadrons in each centrality bin studied. However, we do not observe nu 2(p(T))) scaled by the participant eccentricity to be independent of centrality. At higher PT, 2 1 <= PT <= 6 GeV/c, V2 scales with quark number for all hadrons studied. For the multistrange hadron Omega, which does not suffer appreciable hadronic interactions, the values of upsilon(2) are consistent with both m(T) - m scaling at low p(T) and number-of-quark scaling at intermediate p(T). As a function ofcollision centrality, an increase of p(T)-integrated upsilon(2) scaled by the participant eccentricity has been observed, indicating a stronger collective flow in more central Au+Au collisions.
Resumo:
We report on the observed differences in production rates of strange and multistrange baryons in Au+Au collisions at s(NN)=200 GeV compared to p+p interactions at the same energy. The strange baryon yields in Au+Au collisions, when scaled down by the number of participating nucleons, are enhanced relative to those measured in p+p reactions. The enhancement observed increases with the strangeness content of the baryon, and it increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at the lower collision energy s(NN)=17.3 GeV. The previous observations are for the bulk production, while at intermediate p(T),1 < p(T)< 4 GeV/c, the strange baryons even exceed binary scaling from p+p yields.
Resumo:
Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR Collaboration presents a measurement of rho(0) and direct pi(+)pi(-) photoproduction in ultraperipheral relativistic heavy ion collisions at root s(NN) = 200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross section of sigma(AuAu -> Au*Au*rho(0)) = 530 +/- 19(stat.) +/- 57(syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho 0 transverse momentum spectrum (p(T)(2)) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find sigma(inc)/sigma(coh) = 0.29 +/- 0.03 (stat.) +/- 0.08 (syst.). The ratio of direct pi(+)pi(-) to rho(0) production is comparable to that observed in gamma(p) collisions at HERA and appears to be independent of photon energy. Finally, the measured rho(0) spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.
Resumo:
Background: Core promoters are cis-regulatory modules to which bind the basal transcriptional machinery and which participate in the regulation of transcription initiation. Although core promoters have not been extensively investigated through functional assays in a chromosomal context, the available data suggested that the response of a given core promoter might vary depending on the promoter context. Previous studies suggest that a (-57/+40) fragment constitutes the core promoter of the BhC4-1 gene which is located in DNA puff C4 of the sciarid fly Bradysia hygida. Here we tested this (-57/+40) fragment in distinct regulatory contexts in order to verify if promoter context affects its core promoter activity. Results: Consistent with the activity of a core promoter, we showed that in the absence of upstream regulatory sequences the (-57/+40) fragment drives low levels of reporter gene mRNA expression throughout development in transgenic Drosophila. By assaying the (-57/+40) fragment in two distinct regulatory contexts, either downstream of the previously characterized Fbp1 enhancer or downstream of the UAS element, we showed that the BhC4-1 core promoter drives regulated transcription in both the germline and in various tissues throughout development. Furthermore, the use of the BhC4-1 core promoter in a UAS construct significantly reduced salivary gland ectopic expression in third instar larvae, which was previously described to occur in the context of the GAL4/UAS system. Conclusions: Our results from functional analysis in transgenic Drosophila show that the BhC4-1 core promoter drives gene expression regardless of the promoter context that was assayed. New insights into the functioning of the GAL4/UAS system in Drosophila were obtained, indicating that the presence of the SV40 sequence in the 3' UTR of a UAS construct does not preclude expression in the germline. Furthermore, our analysis indicated that ectopic salivary gland expression in the GAL4/UAS system does not depend only on sequences present in the GAL4 construct, but can also be affected by the core promoter sequences in the UAS construct. In this context, we propose that the sciarid BhC4-1 core promoter constitutes a valuable core promoter which can be employed in functional assays in insects.
Resumo:
impairment of CCAAT Enhancer Binding Protein alpha (CEBPA) function is a common finding in acute myeloid leukemia; nevertheless, its relevance for acute promyelocytic leukemia pathogenesis is unclear. We analyzed the expression and assessed the methylation status of the core and upstream promoters of CEBPA in acute promyelocytic leukemia at diagnosis. Patients with acute promyelocytic leukemia (n=18) presented lower levels of CEBPA expression compared to healthy controls (n=5), but higher levels than those in acute myeloid leukemia with t(8;21) (n=9) and with inv(16) (n=5). Regarding the core promoter, we detected no methylation in 39 acute promyelocytic leukemia samples or in 8 samples from controls. In contrast, analysis of the upstream promoter showed methylation in 37 of 39 samples, with 17 patients showing methylation levels over 30%. Our results corroborate data obtained in animal models showing that CEBPA is down-regulated in acute promyelocytic leukemia stem cells and suggest that epigenetic mechanisms may be involved.
Resumo:
Introduction: Cerebral ischemia is an important cause of brain lesion in humans. The target in research has been the ischemic core or the penumbra zones; little attention has been given to areas outside the core or the penumbra but connected with the primary site of injury. Objective: Evaluate the laminar response of a subpopulation of gabaergic cells, those that are parvalbumin (PV) positive and the astrocytes through the expression of the glial transporter GLT1 on the contralateral cortex to an ischemic core. Methodology: For this purpose we used the medial cerebral artery occlusion model in rats. The artery was occluded for 90 minutes and the animals were sacrificed at 24 and 72 hours post-ischemia. The brains were removed, cut in a vibratome at 50 microns and incubated with the primary antibodies against PV or GLT1. Sections were developed using the vectastain Kit. In control tissue the primary antibody was omitted. Results: When compared with control animals, treated ones show a decrease in the expression of GLT1, especially in layers III and IV of the contralateral cortex to the ischemic core. PV positive cells increases in layers II and V. Conclusion: Increases in the expression of PV cells could correspond to an adaptation associated with glutamate increases in the synaptic compartment. These increases may be due to decreases in the expression of GLT1 transporter, that could not remove the glutamate present in the synaptic cleft, generating hyperactivity in the contralateral cortex. These changes could represent an example of neuronal and glial plasticity in remote areas to an ischemic core but connected to the primary site of injury.
Resumo:
Objective: Our goal was to compare the in vivo biocompatibility of dental root surfaces submitted to four different treatments after tooth avulsion followed by implantation into rat subcutaneous tissue. Background Data: Dental root surface preparation prior to replanting teeth remains a challenge for endodontists. Root surface changes made by Nd:YAG irradiation could be an alternative preparation. Methods: Forty-eight freshly extracted human dental roots were randomly divided into four treatment groups prior to implantation into rat subcutaneous tissue: G1, dry root, left in the environment up to 3 h; G2, the same treatment as G1, followed by a soaking treatment in a 2.4% sodium fluoride solution (pH 5.5); G3, root soaked in physiologic saline after avulsion for 72 h; G4, the same treatment as G1, followed by Nd:YAG laser irradiation (2.0 W, 20 Hz, 100 mJ, and 124.34 J/cm(2)). The animals were sacrificed 1, 7, and 45 d later. Histological and scanning electron microscopy analyses were done. Results: All dental roots were involved and in intimate contact with connective tissue capsules of variable thicknesses. Differences were observed in the degree of inflammation and in connective tissue maturation. In G3 the inflammatory infiltrate was maintained for 45 d, whereas the Nd:YAG laser irradiation (G4) led to milder responses. The overall aspects of the root surfaces were similar, except by the irradiated roots, where fusion and resolidification of the root surface covering the dentinal tubules were observed. Conclusion: Nd:YAG laser irradiation improves the biocompatibility of dental root and thus could be an alternative treatment of dental root prior to replantation.
Resumo:
Objective: The purpose of this in vitro study was to evaluate the dentine root surface roughness and the adherence of Streptococcus sanguinis (ATCC 10556) after treatment with an ultrasonic system, Er:YAG laser, or manual curette. Background Data: Bacterial adhesion and formation of dental biofilm after scaling and root planing may be a challenge to the long-term stability of periodontal therapy. Materials and Methods: Forty flattened bovine roots were randomly assigned to one of the following groups: ultrasonic system (n = 10); Er:YAG laser (n = 10); manual curette (n = 10); or control untreated roots (n = 10). The mean surface roughness (Ra, mu m) of the specimens before and after exposure to each treatment was determined using a surface profilometer. In addition, S. sanguinis was grown on the treated and untreated specimens and the amounts of retained bacteria on the surfaces were measured by culture method. Results: All treatments increased the Ra; however, the roughest surface was produced by the curettes. In addition, the specimens treated with curettes showed the highest S. sanguinis adhesion. There was a significant positive correlation between roughness values and bacterial cells counts. Conclusion: S. sanguinis adhesion was the highest on the curette-treated dentine root surfaces, which also presented the greatest surface roughness.
Resumo:
Objective: The aim of the present study was to compare the in vitro effects of the Er:YAG laser, an ultrasonic system, and manual curette on dentine root surface by roughness and micro-morphological analysis. Materials and Methods: Thirty-six flattened bovine roots were randomly assigned to one of the following groups: group 1 (n = 12): Er: YAG laser ( 2940 nm), 120 mJ/pulse, 10 Hz, 8.4 J/cm(2); group 2 ( n = 12): ultrasonic system; and group 3 ( n = 12): manual curette. The mean surface roughness (Ra) of each sample was measured using a profilometer before and after the treatments. The micro-morphology of the treated and untreated ( control) root surfaces was evaluated with scanning electron microscopy (SEM) at 50 x and 1000 x magnification. Results: Analysis with the profilometer showed that for equal times of instrumentation, the smoothest surfaces were produced by the Er: YAG laser and the ultrasonic system, followed by the curette ( p < 0.05). Morphological analyses demonstrated that treatment with the Er: YAG laser produced some areas with an irregular surface, craters, and ablation of the intertubular dentin. The smear layer was removed and dentine tubules were opened by both curettes and the ultrasonic system. The micro-morphology of the dentine root surface after ultrasonic treatment, however, demonstrated randomly distributed areas cratering. Conclusion: All instruments increased the roughness of the dentine root surface after treatment; however, the curette produced rougher surfaces than the other devices. SEM analysis revealed distinct root surface profiles produced by the three devices.
Resumo:
Objective: The aim of this study was to evaluate the morphology and permeability of root canal walls irradiated with Er,Cr:YSGG laser after conventional endodontic treatment. Background: Laser irradiation can be used for dentinal tubule exposure, smear layer removal, and disinfection. Another potential, interesting application is as an adjunct to endodontic treatment, especially in the intracanal medication phase. Methods: Fifty-two single-rooted teeth had their crowns sectioned at the cementoenamel junction and were randomly divided into four groups (n = 13): G1: conventional preparation (CP) + irrigation with EDTA-T+rhodamine B dye solution associated with NDP (dexamethasone phosphate, paramonochlorophenol, polyethylenoglycol) (Rhod-NDP); G2: CP+EDTA-T + Er,Cr:YSGG laser irradiation 0.75W+Rhod-NDP; G3: CP + EDTA-T + Er,Cr:YSGG 1.5W+Rhod-NDP; G4: CP + EDTA-T + Er,Cr:YSGG 2.5W + Rhod-NDP. For the permeability analysis (n = 9), teeth were transversely cut and two slices of each third were selected. The images were analyzed by ImageLab software (Softium Informatica Ltda., Sao Paulo, SP, Brazil). Additional samples (n = 4) were examined by scanning electron microscopy. Results: Data were analyzed statistically using the Kruskal-Wallis and Student-Newman-Keuls tests for the following areas: apical third (H = 23.4651): G1 (14.25)(a), G2 (17.66)(ab), G3 (26.50)(b), G4 (39.58)(c); medium (H = 23.1611): G1 (14.16)(a), G2 (16.66)(ab), G3 (28.83)(b), G4 (38.33)(b); and cervical (H = 32.4810): G1 (9.66)(a), G2 (20.00)(ab), G3 (27.00)(b), G4 (41.33)(c), (p<0.01). Despite the irregular aspect of laser irradiation along the canal walls, the parameters of 1.5W and 2.5W allowed morphologic modifications that increased dentinal permeability. Conclusions: Irradiation with Er, Cr: YSGG laser could be effective in endodontic treatment for increasing dentinal permeability.
Resumo:
Objective: The aim of this study was to investigate the effects of photodynamic therapy (PDT) on endodontic pathogens by evaluating the decrease in numbers of Enterococcus faecalis colonies in the canals of extracted human teeth. Background Data: Failure in endodontics is usually related to inadequate cleaning and disinfection of the root canal system. This is due to the establishment of microorganisms in areas where the instruments and chemical agents used during root canal preparation cannot eliminate them. PDT is a complementary therapeutic method that could be used to eliminate these remaining bacteria. PDT is a process in which radiation acts on a dye that is applied to the target organism, resulting in bacterial death. Materials and Methods: Forty-six uniradicular teeth had their canals contaminated with bacteria and were incubated for 48 h at 35 degrees C. After that, the teeth were divided into a control group (CG) and a test group (TG). The 23 CG teeth did not undergo any intervention, whereas in the TG the teeth received a solution of 0.0125% toluidine blue for 5 min followed by irradiation using a 50-mW diode laser (Ga-Al-As) at a wavelength of 660 nm. Bacterial samples were taken before and after irradiation. In each of the samples, the number of colony-forming units (CFU) was counted. Results: The mean decrease in CFU was 99.9% in the TG, whereas in the CG an increase of 2.6% was observed. Conclusion: PDT was effective as a bactericidal agent in Enterococcus faecalis-contaminated root canals.
Resumo:
Objective: To evaluate the adhesion of the endodontic sealers Epiphany, Apexit Plus, and AH Plus to root canal dentin submitted to different surface treatments, by using the push-out test. Methods: One hundred twenty-eight root cylinders obtained from maxillary canines were embedded in acrylic resin, had the canals prepared, and were randomly assigned to four groups (n = 32), according to root dentin treatment: (I) distilled water (control), (II) 17% EDTAC, (III) 1% NaOCl and (IV) Er:YAG laser with 16-Hz, 400-mJ input (240-mJ output) and 0.32-J/cm(2) energy density. Each group was divided into four subgroups (n = 8) filled with Epiphany (either dispensed from the automix syringe supplied by the manufacturer or prepared by hand mixing), Apexit Plus, or AH Plus. Data (MPa) were analyzed by ANOVA and Tukey's test. Results: A statistically significant difference (p < 0.01) was found among the root-canal sealers, except for the Epiphany subgroups, which had statistically similar results to each other (p > 0.01): AH Plus (4.77 +/- 0.85), Epiphany/hand mixed (3.06 +/- 1.34), Epiphany/automix syringe (2.68 +/- 1.35), and Apexit Plus (1.22 +/- 0.33). A significant difference (p < 0.01) was found among the dentin surface treatments. The highest adhesion values were obtained with AH Plus when root dentin was treated with Er: YAG laser and 17% EDTAC. Epiphany sealer presented the lowest adhesion values to root dentin treated with 17% EDTAC. Conclusions: The resin-based sealers had different adhesive behaviors, depending on the treatment of root canal walls. The mode of preparation of Epiphany (automix syringe or hand mixing) did not influence sealer adhesion to root dentin.
Resumo:
Objective: The purpose of this in vitro study was to investigate using the scanning electron microscope (SEM) the ultrastructural morphological changes of the radicular dentine surface after irradiation with 980-nm diode laser energy at different parameters and angles of incidence. Background Data: There have been limited reports on the effects of diode laser irradiation at 980 nm on radicular dentin morphology. Materials and Methods: Seventy-two maxillary canines were sectioned and roots were biomechanically prepared using K3 rotary instruments. The teeth were irrigated with 2 mL of distilled water between files and final irrigation was performed with 10 mL of distilled water. The teeth were then randomly divided into five groups (n = 8 each) according to their diode laser parameters: Group 1: no irradiation (control); group 2: 1.5 W/continuous wave (CW) emission (the manufacturer's parameters); group 3: 1.5 W/100 Hz; group 4: 3 W/CW; and group 5: 3 W/100 Hz. Laser energy was applied with helicoid movements (parallel to the canal walls) for 20 sec. Eight additional teeth for each group were endodontically prepared and split longitudinally and irradiation was applied perpendicularly to the root surface. Results: Statistical analysis showed no difference between the root canal thirds irradiated with the 980-nm diode laser, and similar results between the parameters 1.5 W/CW and 3 W/100 Hz (p > 0.05). Conclusion: When considering different output powers and delivery modes our results showed that changes varied from smear layer removal to dentine fusion.