82 resultados para porous cathode
Resumo:
Ti-6Al-4V alloy has been widely used in restorative surgery due to its high corrosion resistance and biocompatibility. Nevertheless, some studies showed that V and Al release in the organism might induce cytotoxic effects and neurological disorders, which led to the development of V-free alloys and both V- and Al-free alloys containing Nb, Zr, Ta, or Mo. Among these alloys, Ti-13Nb-13Zr alloy is promising due to its better biomechanical compatibility than Ti-6Al-4V. In this work, the corrosion behavior of Ti, Ti-6Al-4V, and Ti-xNb-13Zr alloys (x=5, 13, and 20) was evaluated in Ringer`s solution (pH 7.5) at 37 degrees C through open-circuit potential measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy. Spontaneous passivity was observed for all materials in this medium. Low corrosion current densities (in the order of 10(-7) A/cm(2)) and high impedance values (in the order of 10(5) Omega cm(2) at low frequencies) indicated their high corrosion resistance. EIS results showed that the passivating films were constituted of an outer porous layer (very low resistance) and an inner compact layer (high resistance), the latter providing the corrosion resistance of the materials. There was evidence that the Ti-xNb-13Zr alloys were more corrosion resistant than both Ti and Ti-6Al-4V in Ringer`s solution.
Resumo:
This study provides a preliminary contribution to the development of a bioprocess for the contintious production of xylitol from hemicellulosic hydrolyzate utilizing Candida guilliermondii cells immobilized onto natural sugarcane bagasse fibers. To this purpose, cells of this yeast were submitted to batch tests of ""in situ"" adsorption onto crushed and powdered sugarcane bagasse after treatment with 0.5 M NaOH. The results obtained on a xylose-based semi-synthetic medium were evaluated in terms of immobilization efficiency, cell retention and specific growth rates of suspended, immobilized and total cells. The first two parameters were shown to increase along the immobilization process, reached maximum values of 50.5% and 0.31 g immobilized cells/g bagasse after 21 h and then sharply decreased. The specific growth rate of suspended cells continuously increased during the immobilization tests, while that of the immobilized ones, after an initial growth, exhibited decreasing values. Under the conditions selected for cell immobilization, fermentation also took place with promising results. The yields of xylitol and biomass on consumed xylose were 0.65 and 0.18 g/g, respectively, xylitol and biomass productivities 0.66 and 0.13 g L-1 h(-1), and the efficiency of xylose-to-xylitol bioconversion was 70.8%. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the manufacture of tubular UF and MF porous and supported ceramic membranes to oil/water emulsions demulsification. For such a purpose, a rigorous control was realized over the distribution and size of pores. Suspensions at 30 vol.% of solids (zirconia or alumina powder and sucrose) and 70 vol.% of liquids (isopropyl alcohol and PVB) were prepared in a jar mill varying the milling time of the sucrose particles, according to the pores size expected. The membranes were prepared by isostatic pressing method and structurally characterized by SEM, porosimetry by mercury intrusion and measurements of weight by immersion. The morphological characterization of the membranes identified the formation of porous zirconia and alumina membranes and supported membranes. The results of porosimetry analysis by mercury intrusion presented an average pore size of 1.8 mu m for the microfiltration porous membranes and for the ultrafiltration supported membranes, pores with average size of 0.01-0.03 mu m in the top-layer and 1.8 mu m in the support. By means of the manufacture method applied, it was possible to produce ultra and microfiltration membranes with high potential to be applied to the separation of oil/water emulsions. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The objective of the present research was to evaluate the effect of fibre morphology (e.g., length, width, fibrillation, broken ends, content of fines and number of fibres per gram) on flocculation and drainage properties of fibre-cement suspensions and on physical properties of the fibre-cement composites. Mechanical refining was used to change the morphological properties of Eucalyptus and Pinus pulps. Results show that the mechanical refining increased the size of the formed flocs and decreased the concentration of free small particles (with dimensions between 1 and 20 pm) as a consequence of the increased fibrillation and content of fines, which increased the capacity of the fibres to capture the mineral particles. High levels of refining were necessary for Pinus pulp to obtain cement retention values similar to those obtained by unrefined Eucalyptus pulp. This is due to the higher number of fibres per gram in Eucalyptus pulp than in Pinus pulp. Pulp refining improved the packing of the particles and, although decreased the drainage rate. it contributed to a less porous structure, which improved the microstructure of the composite. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The transport of liquid and gaseous pollutants through porous geological media depends on the physical and chemical characteristics of the unconsolidated material, rocks and water associated with the characteristics of the pollutants. Of these characteristics, the sorption aspect is of fundamental importance and is a function of the mineral proportions, pH, Eh and void aspects encountered in the porous media. In the Sao Carlos region, located in the eastern-central part of the 9 ate of Sao Paulo, Brazil, there are basically two types of unconsolidated materials: the first is a residual from sandstones cemented with fines and the secondarily composed of claystones, siltstones and conglomerates from the Cretaceous Period that constitute the Itaqueri Formation; the second is a sandy sediment of the Tertiary Period. These geological conditions are found in areas where chemical products are disposed of characterized as either diffuse or point pollutions sources. Because of this situation, a study was developed to evaluate the sorption aspects of some inorganic cations that are frequently found in these sources, in varied concentrations. Taken into consideration were their physical/chemical properties, such as: specific weight, grain size, mineralogy, cationic exchange capacity, pH, hydraulic conductivity. Batch tests were run using solutions of KCl, ZnCl(2) and CuCl center dot H(2)O at three different pH values, and then with a combined solution (KCl + ZnCl(2) + CuCl center dot H(2)O), also at three different pH values.
Resumo:
Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
It is well established, the importance of the measurement of soil suction for the assessment of mechanical and hydraulic behavior of unsaturated soils. Among the methods to obtain the soil suction, the tensiometer is one of the most convenient and reliable. However conventional tensiometer has a limitation related to the maximum suction it is capable of measure. This limitation was overcome by Ridley and Burland (1993), with the development of a high capacity tensiometer, which is capable of measure suction well above 100 kPa. The equipment has a quick response time, allowing the determination of suction in minutes. This paper presents a study about the factors that affect the equilibrium time for high capacity tensiometers in the laboratory. Soil specimens were prepared at three different conditions, creating different soil structures. In addition to that an investigation about the characteristic of the interface that is required between the soil sample and the porous ceramic of the tensiometer was carried out; showing the role of the paste on the technique. The results also suggested that it is possible to infer the hydraulic conductivity function using the equilibrium curve obtained during the measurement of the soil suction using the high capacity tensiometer.
Resumo:
Because shape is an assessment of the three-dimensional form of a particle, it may be described in terms of sphericity (Psi), which is a measure of how closely a particle approaches a spherical configuration. In this study, Darcy`s law and the Kozeny-Carman model for fluid flow through porous media were applied to packed beds to determine the sphericity (Psi) of apatite particles. The beds were composed of glass spheres or particles of apatite (igneous from Brazil and sedimentary from the United States) of three classes of size (Class 1: -297 +210 mu m; Class 2: -210 +149 mu m; Class 3: -149 +105 mu m). Glass spheres were used to validate the model because of its known sphericity (Psi = 1.00). Apatite particles, either igneous or sedimentary, showed very close values for particle sphericity (Psi approximate to 0.6). Observations on particle images conducted by scanning electron microscopy illustrated that igneous (Psi = 0.623) and sedimentary (Psi = 0.644) particles of apatite of Class 2 predominantly exhibit elongated shape. The close value of particle sphericity (Psi approximate to 0.6) showed by either igneous or sedimentary apatite may be justified by the similarity in particle shape.
Resumo:
The technology of self-reducing pellets for ferro-alloys production is becoming an emerging process due to the lower electric energy consumption and the improvement of metal recovery in comparison with the traditional process. This paper presents the effects of reduction temperature, addition of ferro-silicon and addition of slag forming agents for the production of high carbon ferro-chromium by utilization of self-reducing pellets. These pellets were composed of Brazilian chromium ore (chromite) concentrate, petroleum coke, Portland cement, ferro-silicon and slag forming components (silica and hydrated lime). The pellets were processed at 1 773 K, 1 823 K and 1 873 K using an induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). A large effect on the reduction time was observed by increasing the temperature from 1 773 K to 1 823 K for pellets without Fe-Si addition: around 4 times faster at 1 823 K than at 1 773 K for reaction fraction close to one. However, when the temperature was further increased from 1 823 K to 1 873 K the kinetics improved by double. At 1 773 K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without it. The addition of fluxing agents (silica and lime), which form initial slag before the reduction is completed, impaired the full reduction. These pellets became less porous after the reduction process.
Resumo:
This paper discusses the effects of temperature, addition of ferro-silicon and fluxing agents for the production of high carbon ferro-chromium by self-reducing process. The use of self-reducing agglomerates for ferro-alloys production is becoming an emerging processing technology due to lowering the electric energy consumption and improving the metal recovery in comparison with traditional ones. The self-reducing pellets were composed by chromite, petroleum coke, cement and small (0.1% - 2%) addition of ferro-silicon. The slag composition was adjusted by addition of fluxing agents. The reduction of pellets was carried out at 1773K (1500 degrees C), 1823K (1550 degrees C) and 1873K (1600 degrees C) by using induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). By increasing temperature from 1773K to 1823K large effect on the reduction time was observed. It decreased from 30 minutes to 10 minutes, for reaching around 0.98 reduction fraction. No significant effect on reduction time was observed when the reduction temperature was increased from 1823K to 1873K. At 1773K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without this addition. The addition of fluxing agents (silica and hydrated lime) has effect on reduction time (inverse relationship) and the pellets become less porous after reduction.
Resumo:
The electrochemical behaviour of a near-beta Ti-13Nb-13Zr alloy for the application as implants was investigated in various solutions. The electrolytes used were 0.9 wt% NaCl solution, Hanks` solution and a culture medium known as minimum essential medium (MEM) composed of salts, vitamins and amino acids, all at 37 degrees C. The electrochemical behaviour was investigated by the following electrochemical techniques: open circuit potential measurements as a function of time, electrochemical impedance spectroscopy (EIS) and determination of polarisation curves. The obtained results showed that the Ti alloy was passive in all electrolytes. The EIS results were analysed using an equivalent electrical circuit representing a duplex structure oxide layer, composed of an inner barrier layer, mainly responsible for the alloy corrosion resistance, and an outer and porous layer that has been associated to osteointegration ability. The properties of both layers were dependent on the electrolyte used. The results suggested that the thickest porous layer is formed in the MEM solution whereas the impedance of the barrier layer formed in this solution was the lowest among the electrolytes used. The polarisation curves showed a current increase at potentials around 1300 mV versus saturated calomel electrode (SCE), and this increase was also dependent on the electrolyte used. The highest increase in current density was also associated to the MEM solution suggesting that this is the most aggressive electrolyte to the Ti alloy among the three tested solutions.
Resumo:
Due to rain events historical monuments exposed to the atmosphere are frequently submitted to wet and dry cycles. During drying periods wetness is maintained in some confined regions and the corrosion product layer, generally denominated patinas, builds up and gets thicker. The aim of this study is to use electrochemical impedance spectroscopy (EIS) to investigate the electrochemical behaviour of pure copper coated with two artificial patina layers and submitted either to continuous or to intermittent immersion tests, this latter aiming to simulate wet and dry cycles. The experiments were performed in 0.1 mol dm(-3) NaCl solution and in artificial rainwater containing the most significant pollutants of the city of Sao Paulo. The results of the continuous immersion tests in the NaCl solution have shown that the coated samples behave like a porous electrode with finite pore length. On the other hand, in the intermittent tests a porous electrode response with semi-infinite pore length can be developed. The results were interpreted based on the model of de Levie and a critical comparison with previous interpretations reported in the literature for similar systems is presented. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Activated slag cement (ASC) shows significantly higher shrinkage than ordinary Portland cement agglomerates. Cracking generated by shrinkage is one of the most critical drawbacks for broader applications of this promising alternative binder. This article investigates the relationship between ASC hydration, unrestrained drying and autogenous shrinkage of mortar specimens. The chemical and microstructure evolution due to hydration were determined on pastes by thermogravimetric analysis, conduction calorimetry and mercury porosimetry. Samples were prepared with ground blast furnace slag (BFS) activated with sodium silicate (silica modulus of 1.7) with 2.5, 3.5 and 4.5% of Na2O, by slag mass. The amount of activator is the primary influence on drying and autogenous shrinkage, and early hydration makes a considerable contribution to the total result, which increases with the amount of silica. Drying shrinkage occurred in two stages, the first caused by extensive water loss when the samples were exposed to the environment, and the second was associated with the hydration process and less water loss. Due to the refinement of ASC porous system, autogenous shrinkage is responsible for a significant amount of the total shrinkage. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This article reports the characteristics of blast furnace slag (BFS) pastes activated with hydrated lime (5%) and hydrated lime (2%) plus gypsum (6%) in relation to compressive strength, shrinkage (autogenous and drying) and microstructure (porosity, hydrated products). The paste mixtures were characterized using powder X-ray diffraction (XRD), mercury intrusion porosimetry (MIP) and thermogravimetric analysis (TG/DTG). BSF activated with lime and gypsum (LG) results in larger amounts of ettringite when compared with BFS activated with lime (L). Although the porosities of the L and LG mixtures were about the same, there was a greater pore refinement for the BFS activated with lime, with an increase in mesopores volume with age. The presence of ettringite and the higher volumes of macropores cause the compressive strength of BSF activated with hydrated lime plus gypsum to be smaller than that of BFS activated with lime. For both chemical activators, compressive strength developed slowly at early ages. Autogenous and drying shrinkage were greater for the BFS activated with lime, believed to result from the more refined porous structure in comparison with the mixture activated with gypsum plus lime. (c) 2010 Elsevier Ltd. All rights reserved.