46 resultados para micro-epidemic
Resumo:
Objective: The objective of this study was to evaluate the influence of the surface treatment and acid conditioning (AC) time of bovine sclerotic dentine on the micro-tensile bond strength (mu-TBS) to an etch and rinse adhesive system. Materials and method: Thirty-six bovine incisors were divided into six groups (n = 6): G1 sound dentine submitted to AC for 15 s; G2-G6 sclerotic dentine: G2-AC for 15 s; G3-AC for 30 s; G4-EDTA and AC for 15 s; G5-diamond bur and AC for 15 s; G6-diamond paste and AC for 15 s. An adhesive system was applied to the treated dentine surfaces followed by a hybrid composite inserted in increments and light cured. After 24 h storage in water at 37 degrees C, the specimens were perpendicularly cut with a low-speed diamond saw to obtain beams (0.8 mm x 0.8 mm cross-sectional dimensions) for mu-TBS testing. Data was compared by ANOVA followed by Tukey`s test (P <= 0.05). Results: The mean L-TBS was G1: 18.87 +/- 5.36 MPa; G2: 12.94 +/- 2.09 MPa; G3: 11.73 +/- 0.64 MPa; G4: 11.14 +/- 1.50 MPa; G5: 22.75 +/- 4.10 MPa; G6: 22.48 +/- 2.71 MPa. G1, G5 and G6 presented similar bond strengths significantly higher than those of all other groups. Conclusion: The surface treatment of sclerotic dentine significantly influenced the bond strength to an adhesive system. Mechanical treatment, either using a diamond bur or a diamond paste was able to improve bonding to bovine sclerotic dentine, reaching values similar to bonding to sound dentine. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This study tested if dentin adhesion is affected by Er:YAG laser. Ninety dentin disks were divided in groups (n=10): G1, control; G2, Er:YAG laser 150 mJ, 90 degrees contact, 38.8 J/cm(2); G3, Er:YAG laser 70 mJ, 90 degrees contact, 18.1 J/cm(2); G4, Er:YAG laser 150 mJ, 90 degrees non-contact, 1.44 J/cm(2); G5, Er:YAG laser 70 mJ, 90 degrees non-contact, 0.67 J/cm(2); G6, Er:YAG laser 150 mJ, 45 degrees contact, 37.5 J/cm(2); G7, Er:YAG laser 70 mJ, 45 degrees contact, 17.5 J/cm(2); G8, Er:YAG laser 150 mJ, 45 degrees non-contact, 1.55 J/cm(2); and G9, Er:YAG laser 70 mJ, 45 degrees non-contact, 0.72 J/cm(2). Bonding procedures were carried out and the micro-shear-bond strength (MSBS) test was performed. The adhesive surfaces were analyzed under SEM. Two-way ANOVA and multiple comparison tests revealed that MSBS was significantly influenced by the laser irradiation (p < 0.05). Mean values (MPa) of the MSBS test were: G1 (44.97 +/- 6.36), G2 (23.83 +/- 2.46), G3 (30.26 +/- 2.57), G4 (35.29 +/- 3.74), G5 (41.90 +/- 4.95), G6 (27.48 +/- 2.11), G7 (34.61 +/- 2.91), G8 (37.16 +/- 1.96), and G9 (41.74 +/- 1.60). It was concluded that the Er:YAG laser can constitute an alternative tool for dentin treatment before bonding procedures.
Resumo:
The aim of this study was to evaluate the micro-shear bond strength of 5 adhesive systems to enamel, one single-bottle acid-etch adhesive (O), two self-etching primers (P) and two all-in-one self-etching adhesives (S). Method: Sixty premolar enamel surfaces (buccal or lingual) were ground flat with 400- and 600-grit SiC papers and randomly divided into 5 groups (n=12), according to the adhesive system.. SB2 - Single Bond 2 (O); CSE - Clearfil SE Bond (P); ADS - AdheSE (P); PLP - Adper Prompt L-Pop (S); XE3 - Xeno III (S). Tygon tubing (inner diameter of 0.8mm) restricted the bonding area to obtain the resin composite (Z250) cylinders. After storage in distilled water at 37 degrees C for 24h and thermocycling, micro-shear testing was performed (crosshead speed of 0.5mm/min). Data were submitted to one-way ANOVA and Tukey test (a=5%). Samples were also subjected to stereomicroscopic and SEM evaluations after micro-shear testing. Mean bond strength values (MPa +/- SD) and the results of Tukey test were: SB2: 36.36(+/- 3.34)a; ADS: 33.03(+/- 7.83)a; XE3: 32.76(+/- 5.61)a; CSE: 30.61(+/- 6.68)a; PLP: 22.17(+/- 6.05)b. Groups with the same letter were not statistically different. It can be concluded that no significant difference was there between SB2, ADS, XE3 and CSE, in spite of different etching patterns of these adhesives. Only PLP presented statistically lower bond strengths compared with others. J Clin Pediatr Dent 35(3): 301-304, 2011
Resumo:
Introduction: The aim of this study was to evaluate the root canal preparation in flat-oval canals treated with either rotary or self-adjusting file (SAF) by using micro-tomography analysis. Methods: Forty mandibular incisors were scanned before and after root canal instrumentation with rotary instruments (n = 20) or SAF (n = 20). Changes in canal volume, surface area, and cross-sectional geometry were compared with preoperative values. Data were compared by independent sample t test and chi(2) test between groups and paired sample t test within the group (alpha = 0.05). Results: Overall, area, perimeter, roundness, and major and minor diameters revealed no statistical difference between groups (P > .05). In the coronal third, percentage of prepared root canal walls and mean increases of volume and area were significantly higher with SAF (92.0%, 1.44 +/- 0.49 mm(3), 0.40 +/- 0.14 mm(2), respectively) than rotary instrumentation (62.0%, 0.81 +/- 0.45 mm(3), 0.23 +/- 0.15 mm2, respectively) (P < .05). SAF removed dentin layer from all around the canal, whereas rotary instrumentation showed substantial untouched areas. Conclusions: In the coronal third, mean increases of area and volume of the canal as well as the percentage of prepared walls were significantly higher with SAF than with rotary instrumentation. By using SAF instruments, flat-oval canals were homogenously and circumferentially prepared. The size of the SAF preparation in the apical third of the canal was equivalent to those prepared with #40 rotary file with a 0.02 taper. (J Endod 2011;37:1002-1007)
Resumo:
P>Aim To investigate the internal and external anatomy of extracted human mandibular canines with two roots and two distinct canals using micro-computed tomography (mu CT). Methodology Fourteen two-rooted human mandibular canines were scanned using a high-resolution mu CT system (SkyScan 1174v2; SkyScan N.V., Kontich, Belgium). The images were processed to evaluate the size of the roots, the furcation regions, the presence of accessory canals, the mean distances between several anatomical landmarks, the position of the apical foramina, the direction of root curvatures, the cross-sectional appearances (SMI index), the volume and surface areas of the root canals. Results Root bifurcation was located in both apical (44%, n = 6) and middle (58%, n = 8) thirds of the root. The size of the buccal and lingual roots was similar in 29% of the sample. From a buccal view, no curvature towards the lingual or buccal direction occurred in either roots. From a proximal view, no straight lingual root occurred. In both views, S-shaped roots were found in 21% of the specimens. Location of the apical foramen varied considerably, tending to the mesio-buccal aspect of both roots. Lateral and furcation canals were observed mostly in the cervical third in 29% and 65% of the sample, respectively. The structure model index (SMI) index ranged from 1.87 to 3.86, with a mean value of 2.93 +/- 0.46. Mean volume and area of the root canals were 11.52 +/- 3.44 mm3 and 71.16 +/- 11.83 mm2, respectively. Conclusions The evaluation of two-rooted mandibular canines revealed that bifurcations occurred in the apical and middle third. S-shaped roots were found in 21% of the specimens. Mean volume, surface area and SMI index of the root canals were 11.52 mm3, 71.16 mm2 and 2.93, respectively.
Resumo:
Nucleoticle sequence analyses of the SH gene of 18 mumps virus isolates collected in the 2006-2007 parotitis epidemic in the state of Sao Paulo identified a new genotype, designated genotype M. This new designation fulfills all the parameters required to define a new mumps virus genotype. The parameters were established by an expert panel in collaboration with the World Health Organization (WHO) in 2005. This information will enhance the mumps virus surveillance program both at the national and global levels.
Resumo:
The current trend toward minimal-invasive dentistry has introduced innovative techniques for cavity preparation. Chemical vapor deposition (CVD) and laser-irradiation technology have been employed as an alternative to the common use of regular burs in high-speed turbines. Objectives. The purpose of this study was to assess the influence of alternative techniques for cavity preparation on the bonding effectiveness of different adhesives to dentin, and to evaluate the morphological characteristics of dentin prepared with those techniques. Methods. One etch&rinse adhesive (OptiBond FL, Kerr) and three self-etch systems (Adper Prompt L-Pop, 3M ESPE; Clearfil SE Bond, Kuraray; Clearfil S3 Bond, Kuraray) were applied on dentin prepared with a regular bur in a turbine, with a CVD bur in a turbine, with a CVD tip in ultrasound and with an ErCr:YSGG laser. The micro-tensile bond strength (mu TBS) was determined after storage in water for 24 h at 37 degrees C, and morphological evaluation was performed by means of field -emission -gun scanning electron microscopy (Feg-SEM). Results. Feg-SEM evaluation revealed different morphological features on the dentin surface after the usage of both the conventional and alternative techniques for cavity preparation, more specifically regarding smear-layer thickness and surface roughness. CVD bur-cut, CVD ultra-sonoabraded and laser-irradiated dentin resulted in lower mu TBSs than conventionally bur-cut dentin, irrespective of the adhesive employed. Significance. The techniques, such as CVD diamond-bur cutting, CVD diamond ultra-sonoabrasion and laser-irradiation, used for cavity preparation may affect the bonding effectiveness of adhesives to dentin, irrespective of their acidity or approach. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Surazomus uarini n. sp. is described and illustrated based on specimens collected by beating on understory vegetation of Amazonian ""terra firme"" upland rain forests. A new cuticular structure, possibly a gland opening, is described on the female tarsus I and terminal flagellum. A putatively homologous structure is reported from the same body parts in all Undescribed species of Rowlandius Reddell and Cokendolpher 1995; Stenochrus portoricensis Chamberlin 1922; Mastigoproctus maximus (Tarnani 1889), and Thelyphonellus amazonicus (Butler 1872); suggesting it new synapomorphy for the clade Uropygi (i.e., Schizomida + Thelyphonida).
Resumo:
Human herpesvirus 8 (HHV-8) infection is common in sub-Saharan Africa, but its prevalence in Mozambique is unknown. The seroprevalence of HHV-8 in a cohort of individuals seen at public health centers in Northern (n = 208), Central (n = 226), or Southern (n = 318) Mozambique was examined. All individuals were interviewed to obtain socioeconomic, demographic and clinical data and were tested for serum anti-HHV-8 antibodies using an immunofluorescence assay. The overall frequency of HHV-8 antibodies was 21.4% and, in spite of the diversity of epidemiological characteristics of the tested individuals, did not differ significantly among regions: 18.7%, 24.3% and 21.4% in the North, Center, and South, respectively (chi(2), 2.37; P = 0.305). The variables that were associated significantly with the presence of HHV-8 antibodies were gender, age, level of education, number of siblings and HIV serostatus, but these differed across the regions. In the North, although tested individuals lived under poor socioeconomic conditions, no association between HHV-8 infection and household variables was detected, with the exception of the number of siblings (P = 0.042). In the Central region, HHV-8 infection was associated with gender (P = 0.010), the number of household members (P = 0.031), and the place of attendance (P = 0.021). In the South, HHV-8 infection was associated with the number of siblings (P = 0.023) and HIV status (P = 0.002). The overall prevalence of HHV-8 seropositivity increased with age. These results demonstrate that Mozambique is another country in Africa with endemic HHV-8 infection, and, because of the AIDS epidemic, continued access to antiretroviral treatment is necessary to avert an outbreak of AIDS-Kaposi`s sarcoma. J. Med. Virol. 82:1216-1223, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.
Complexity and anisotropy in host morphology make populations less susceptible to epidemic outbreaks
Resumo:
One of the challenges in epidemiology is to account for the complex morphological structure of hosts such as plant roots, crop fields, farms, cells, animal habitats and social networks, when the transmission of infection occurs between contiguous hosts. Morphological complexity brings an inherent heterogeneity in populations and affects the dynamics of pathogen spread in such systems. We have analysed the influence of realistically complex host morphology on the threshold for invasion and epidemic outbreak in an SIR (susceptible-infected-recovered) epidemiological model. We show that disorder expressed in the host morphology and anisotropy reduces the probability of epidemic outbreak and thus makes the system more resistant to epidemic outbreaks. We obtain general analytical estimates for minimally safe bounds for an invasion threshold and then illustrate their validity by considering an example of host data for branching hosts (salamander retinal ganglion cells). Several spatial arrangements of hosts with different degrees of heterogeneity have been considered in order to separately analyse the role of shape complexity and anisotropy in the host population. The estimates for invasion threshold are linked to morphological characteristics of the hosts that can be used for determining the threshold for invasion in practical applications.
Resumo:
CaNb(2)O(6) single crystal fibers were grown by the laser-heated pedestal growth technique, directly from the starting reagents. Optically transparent fibers were obtained in the form of rods with elliptical cross-section, free from cracks, impurities, and secondary phases, with an average diameter of 0.4 mm and about 20 mm of length. The fibers grew within the orthorhombic Pbcn columbite structure, with the growth axis nearly parallel to the crystallographic a-direction. The parameters b and c were parallel to the shorter and larger ellipsis axes. A special setup using a microscope was developed to obtain the far-infrared reflectivity spectra of these micrometer-sized fibers, allowing the identification and assignment of 34 of the 38 polar phonons foreseen for the material. From these phonons, the intrinsic dielectric constant ( of 185 THz) could be estimated, showing the potential of the material for applications in microwave circuitry. These results, along with previous polarized Raman data (Cryst. Growth Des. 2010, 10, 1569), allow us to present a comprehensive set of optical phonon modes and to discuss the potential use of designed CaNb(2)O(6) microcrystals in compact optical devices.
Resumo:
Schistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (<= 36 bp) symmetric exons organized in tandem. Analysis of three closely related copies of one MEG family allowed us to trace several evolutionary events and propose a mechanism for micro-exon generation and diversification. Microarray experiments show that the majority of MEGs are up-regulated in life cycle stages associated with establishment in the mammalian host after skin penetration. Sequencing of RT-PCR products allowed the description of several alternate splice forms of micro-exon genes, highlighting the potential use of these transcripts to generate a complex pool of protein variants. We obtained direct evidence for the existence of such pools by proteomic analysis of secretions from migrating schistosomula and mature eggs. Whole-mount in situ hybridization and immunolocalization showed that MEG transcripts and proteins were restricted to glands or epithelia exposed to the external environment. The ability of schistosomes to produce a complex pool of variant proteins aligns them with the other major groups of blood parasites, but using a completely different mechanism. We believe that our data open a new chapter in the study of immune evasion by schistosomes, and their ability to generate variant proteins could represent a significant obstacle to vaccine development.
Resumo:
A carbon micro/nanostructured composite based on cup-stacked carbon nanotubes (CSCNTs) grown onto a carbon felt has been found to be an efficient matrix for enzyme immobilization and chemical signal transduction. The obtained CSCNT/felt was modified with a copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) hybrid mediator, and the resulting composite electrode was applied to H(2)O(2) detection, achieving a sensitivity of 194 +/- 15 mu A mmol(-1) L. The results showed that the CSCNT/felt matrix significantly increased the sensitivity of CuHCNFe/Ppy-based sensors compared to those prepared on a felt unrecovered by CSCNTs. Our data revealed that the improved sensitivity of the as-prepared CuHCNFe/Ppy-CSCNT/felt composite electrode can be attributed to the electronic interactions taking place among the CuHCNFe nanocrystals, Ppy layer and CSCNTs. In addition, the presence of CSCNTs also seemed to favor the dispersion of CuHCNFe nanocrystals over the Ppy matrix, even though the CSCNTs were buried under the conducting polymer layer. The CSCNT/felt matrix also enabled the preparation of a glucose biosensor whose sensitivity could be tuned as a function of the number of glucose oxidase (GOx) layers deposited through a Layer-by-Layer technique with an sensitivity of 11 +/- 2 mu A mmol(-1) L achieved at 15 poly(diallyldimethylammoniumchloride)/GOx bilayers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The highly hydrophobic 5,10,15-triphenyl-20-(3-N-methylpyridinium-yl)porphyrin(3MMe)cationic species was synthesized, characterized and encapsulated in marine atelocollagen/xanthane gum microcapsules by the coacervation method. Further reduction in the capsule size, from several microns down to about 300-400 nm, was carried out successfully by ultrasonic processing in the presence of up to 1.6% Tween 20 surfactant, without affecting the distribution of 3MMe in the oily core. The resulting creamlike product exhibited enhanced photodynamic activity but negligible cytotoxicity towards HeLa cells. The polymeric micro/nanocapsule formulation was found to be about 4 times more phototoxic than the respective phosphatidylcholine lipidic emulsion, demonstrating high potentiality for photodynamic therapy applications. (C) 2009 Elsevier B.V. All rights reserved.