60 resultados para identification and validation of knowledge
Resumo:
A methodology of identification and characterization of coherent structures mostly known as clusters is applied to hydrodynamic results of numerical simulation generated for the riser of a circulating fluidized bed. The numerical simulation is performed using the MICEFLOW code, which includes the two-fluids IIT`s hydrodynamic model B. The methodology for cluster characterization that is used is based in the determination of four characteristics, related to average life time, average volumetric fraction of solid, existing time fraction and frequency of occurrence. The identification of clusters is performed by applying a criterion related to the time average value of the volumetric solid fraction. A qualitative rather than quantitative analysis is performed mainly owing to the unavailability of operational data used in the considered experiments. Concerning qualitative analysis, the simulation results are in good agreement with literature. Some quantitative comparisons between predictions and experiment were also presented to emphasize the capability of the modeling procedure regarding the analysis of macroscopic scale coherent structures. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behaviour. In this paper, a system based on artificial neural networks is developed to overcome the problems usually found in the conventional mathematical models. More specifically, the developed system uses an artificial neural network that simulates the behaviour of the crossflow filtration process in a robust way. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the neural approach. Simulation results are presented to justify the validity of the proposed approach. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Rearrangements of 1p36 are the most frequently detected abnormalities in diagnostic testing for chromosomal cryptic imbalances and include variably sized simple terminal deletions, derivative chromosomes, interstitial deletions, and complex rearrangements. These rearrangements result in the specific pattern of malformation and neurodevelopmental disabilities that characterizes monosomy 1p36 syndrome. Thus far, no individual gene within this region has been conclusively determined to be causative of any component of the phenotype. Nor is it known if the rearrangements convey phenotypes via a haploinsufficiency mechanism or through a position effect. We have used multiplex ligation-dependent probe amplification to screen for deletions of 1p36 in a group of 154 hyperphagic and overweight/obese, PWS negative individuals, and in a separate group of 83 patients initially sent to investigate a variety of other conditions. The strategy allowed the identification and delineation of rearrangements in nine subjects with a wide spectrum of clinical presentations. Our work reinforces the association of monosomy 1p36 and obesity and hyperphagia, and further suggests that these features may be associated with non-classical manifestations of this disorder in addition to a submicroscopic deletion of similar to 2-3 Mb in size. Multiplex ligation probe amplification using the monosomy 1p36 syndrome-specific kit coupled to the subtelomeric kit is an effective approach to identify and delineate rearrangements at 1p36. (C) 2009 Wiley-Liss, Inc.
Resumo:
The enzyme dihydroorotate dehydrogenase (DHODH) has been suggested as a promising target for the design of trypanocidal agents. We report here the discovery of novel inhibitors of Trypanosoma cruzi DHODH identified by a combination of virtual screening and ITC methods. Monitoring of the enzymatic reaction in the presence of selected ligands together with structural information obtained from X-ray crystallography analysis have allowed the identification and validation of a novel site of interaction (S2 site). This has provided important structural insights for the rational design of T cruzi and Leishmania major DHODH inhibitors. The most potent compound (1) in the investigated series inhibits TcDHODH enzyme with K(i)(app) value of 19.28 mu M and possesses a ligand efficiency of 0.54 kcal mol(-1) per non-H atom. The compounds described in this work are promising hits for further development. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.
Resumo:
We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia cuiicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Dental caries is a transmissible infectious disease in which mutans streptococci are generally considered to be the main etiological agents. Although the transmissibility of dental caries is relatively well established in the literature, little is known whether information regarding this issue is correctly provided to the population. The present study aimed at evaluating, by means of a questionnaire, the knowledge and usual attitude of 640 parents and caretakers regarding the transmissibility of caries disease. Most interviewed adults did not know the concept of dental caries being an infectious and transmissible disease, and reported the habit of blowing and tasting food, sharing utensils and kissing the children on their mouth. 372 (58.1%) adults reported that their children had already been seen by a dentist, 264 (41.3%) answered that their children had never gone to a dentist, and 4 (0.6%) did not know. When the adults were asked whether their children had already had dental caries, 107 (16.7%) answered yes, 489 (76.4%) answered no, and 44 (6.9%) did not know. Taken together, these data reinforce the need to provide the population with some important information regarding the transmission of dental caries in order to facilitate a more comprehensive approach towards the prevention of the disease.
Resumo:
The aim of this study was to translate, validate and verify the reliability of the Body Area Scale (BAS). Participants were 386 teenagers, enrolled in a private school. Translation into Portuguese was conducted. The instrument was evaluated for internal consistency and construct validation analysis. Reproducibility was evaluated using the Wilcoxon test and the coefficient of interclass correlation. The BAS demonstrated good values for internal consistency (0.90 and 0.88) and was able to discriminate boys and girls according to nutritional state (p = 0.020 and p = 0.026, respectively). BAS scores correlated with adolescents' BMI (r = 0.14, p = 0.055; r = 0.23, p = 0.001) and WC (r =0.13, p = 0.083; r = 0.22, 0.002). Reliability was confirmed by the coefficient of inter-class correlation (0.35, p < 0.001; 0.60, p < 0.001) for boys and girls, respectively. The instrument performed well in terms of understanding and time of completion. BAS was successfully translated into Portuguese and presented good validity when applied to adolescents.
Resumo:
The aim of this study was to validate the intake of carotenoids, fruits and vegetables estimated by the Food Frequency Questionnaire for Adolescents (FFQA) using the method of triads. Blood samples were collected from 80 elementary school adolescents to assess serum levels of β-carotene. Partial correlation coefficients (r) were calculated between an estimated intake of carotenoids, fruits and vegetables and the serum levels of β-carotene. Validity coefficients were calculated using the method of triads. With the exception of carotenoids, partial r from the food frequency questionnaire (FFQ) were greater than those of the 24-hour recall (24hR). The fruit/vegetable group showed the highest partial r for the FFQ (r = 0.235) and the 24hR (r = 0.137). The highest validity coefficient was obtained for the vegetable group, as assessed by the FFQ (r = 0.873). On average, the validity coefficient values for the FFQ were greater than those obtained for the 24hR or the β-carotene serum levels. The FFQA is an accurate tool for estimating the intake of carotenoids, fruits and vegetables in this population group.
Resumo:
This work is a part of a taxonomic revision of the Neotropical genus Hortia (Rutaceae), where three names (H. colambiana Gleason. H. chocoensis Cuatrec., and H. badinii M. Lisboa ex Groppo) are proposed as synonyms of H. brasiliana Vand. ex DC., and the name H. badinii is here validated. Additionally, another name in the Rutaceae. Dictyoloma peruvianum Plana., is proposed as a synonym of D. vandellianum A. Juss. Notes on the type collection of D. vandellianum are provided.
Resumo:
It has been known for decades that some insect-infecting trypanosomatids can survive in culture without heme supplementation while others cannot, and that this capability is associated with the presence of a betaproteobacterial endosymbiont in the flagellate's cytoplasm. However, the specific mechanisms involved in this process remained obscure. In this work, we sequence and phylogenetically analyze the heme pathway genes from the symbionts and from their hosts, as well as from a number of heme synthesis-deficient Kinetoplastida. Our results show that the enzymes responsible for synthesis of heme are encoded on the symbiont genomes and produced in close cooperation with the flagellate host. Our evidence suggests that this synergistic relationship is the end result of a history of extensive gene loss and multiple lateral gene transfer events in different branches of the phylogeny of the Trypanosomatidae.
Resumo:
Background: Mutations in TP53 are common events during carcinogenesis. In addition to gene mutations, several reports have focused on TP53 polymorphisms as risk factors for malignant disease. Many studies have highlighted that the status of the TP53 codon 72 polymorphism could influence cancer susceptibility. However, the results have been inconsistent and various methodological features can contribute to departures from Hardy-Weinberg equilibrium, a condition that may influence the disease risk estimates. The most widely accepted method of detecting genotyping error is to confirm genotypes by sequencing and/or via a separate method. Results: We developed two new genotyping methods for TP53 codon 72 polymorphism detection: Denaturing High Performance Liquid Chromatography (DHPLC) and Dot Blot hybridization. These methods were compared with Restriction Fragment Length Polymorphism (RFLP) using two different restriction enzymes. We observed high agreement among all methodologies assayed. Dot-blot hybridization and DHPLC results were more highly concordant with each other than when either of these methods was compared with RFLP. Conclusions: Although variations may occur, our results indicate that DHPLC and Dot Blot hybridization can be used as reliable screening methods for TP53 codon 72 polymorphism detection, especially in molecular epidemiologic studies, where high throughput methodologies are required.
Resumo:
This study tested the concurrent and construct validity of a newly developed OMNI-Kayak Scale, testing 8 male kayakers who performed a flatwater load-incremented ""shuttle"" test over a 500-m course and 3 estimation-production trials over a 1,000-m course. Velocity, blood lactate concentration, heart rate, and rating of perceived exertion (RPE), using the OMNI-Kayak RPE Scale and the Borg 6-20 Scale were recorded. OMNI-Kayak Scale RPE was highly correlated with velocity, the Borg 6-20 Scale RPE, blood lactate, and heart rate for both load-incremented test (rs=.87-.96), and estimation trials (rs=.75-.90). There were no significant differences among velocities, heart rate and blood lactate concentration between estimation and production trials. The OMNI-Kayak RPE Scale showed concurrent and construct validity in assessing perception of effort in flatwater kayaking and is a valid tool for self-regulation of exercise intensity.
Resumo:
The aim of this study was to investigate the effects of knowledge of results (KR) frequency and task complexity on motor skill acquisition. The task consisted of throwing a bocha ball to place it as close as possible to the target ball. 120 students ages 11 to 73 years were assigned to one of eight experimental groups according to knowledge of results frequency (25, 50, 75, and 100%) and task complexity (simple and complex). Subjects performed 90 trials in the acquisition phase and 10 trials in the transfer test. The results showed that knowledge of results given at a frequency of 25% resulted in an inferior absolute error than 50% and inferior variable error than 50, 75, and 100 I frequencies, but no effect of task complexity was found.
Resumo:
This paper proposes a mixed validation approach based on coloured Petri nets and 3D graphic simulation for the design of supervisory systems in manufacturing cells with multiple robots. The coloured Petri net is used to model the cell behaviour at a high level of abstraction. It models the activities of each cell component and its coordination by a supervisory system. The graphical simulation is used to analyse and validate the cell behaviour in a 3D environment, allowing the detection of collisions and the calculation of process times. The motivation for this work comes from the aeronautic industry. The automation of a fuselage assembly process requires the integration of robots with other cell components such as metrological or vision systems. In this cell, the robot trajectories are defined by the supervisory system and results from the coordination of the cell components. The paper presents the application of the approach for an aircraft assembly cell under integration in Brazil. This case study shows the feasibility of the approach and supports the discussion of its main advantages and limits. (C) 2011 Elsevier Ltd. All rights reserved.