33 resultados para genesis of coal
Resumo:
Oxy-coal combustion is a viable technology, for new and existing coal-fired power plants, as it facilitates carbon capture and, thereby, can mitigate climate change. Pulverized coals of various ranks, biomass, and their blends were burned to assess the evolution of combustion effluent gases, such as NO(x), SO(2), and CO, under a variety of background gas compositions. The fuels were burned in an electrically heated laboratory drop-tube furnace in O(2)/N(2) and O(2)/CO(2) environments with oxygen mole fractions of 20%, 40%, 60%, 80%, and 100%, at a furnace temperature of 1400 K. The fuel mass flow rate was kept constant in most cases, and combustion was fuel-lean. Results showed that in the case of four coals studied, NO(x) emissions in O(2)/CO(2) environments were lower than those in O(2)/N(2) environments by amounts that ranged from 19 to 43% at the same oxygen concentration. In the case of bagasse and coal/bagasse blends, the corresponding NO(x) reductions ranged from 22 to 39%. NO(x) emissions were found to increase with increasing oxygen mole fraction until similar to 50% O(2) was reached; thereafter, they monotonically decreased with increasing oxygen concentration. NO(x) emissions from the various fuels burned did not clearly reflect their nitrogen content (0.2-1.4%), except when large content differences were present. SO(2) emissions from all fuels remained largely unaffected by the replacement of the N(2) diluent gas with CO(2), whereas they typically increased with increasing sulfur content of the fuels (0.07-1.4%) and decreased with increasing calcium content of the fuels (0.28-2.7%). Under the conditions of this work, 20-50% of the fuel-nitrogen was converted to NO(x). The amount of fuel-sulfur converted to SO(2) varied widely, depending on the fuel and, in the case of the bituminous coal, also depending on the O(2) mole fraction. Blending the sub-bituminous coal with bagasse reduced its SO(2) yields, whereas blending the bituminous coal with bagasse reduced both its SO(2) and NO(x) yields. CO emissions were generally very low in all cases. The emission trends were interpreted on the basis of separate combustion observations.
Resumo:
The objective of this work was to select indigenous vegetal species for restoration programs aiming at the regeneration of ombrophilous dense forest. Thirty-five spoil piles located in the county of Sideropolis, Santa Catarina, that received overburden disposal for 39 years (1950-1989) were selected for study because they exhibited remarkable spontaneous regrowth of trees compared to surrounding spoil piles. Floristic inventory covered the whole area of the 35 piles, whereas survey on phytosociology and natural regeneration studies were conducted in 70 plots distributed along the 35 piles. Floristic inventory recorded 83 species from 28 botanical families. Herbaceous terricolous plants constituted the predominant species (47.0%), followed by shrubs (26.5%), trees (19.3%), and vines (7.2%). Results from surveys on phytosociology and natural regeneration, focused on shrubs and trees, recorded incipient ecological succession. In addition, the most adapted species recorded on the overburden piles, as ranked by index of natural regeneration (RNT) plus importance value index (IVI), were as follows: Clethra scabra (RNT = 23.93%; IVI = 17.28%), Myrsine coriacea (RNT = 20.93%, IVI = 11.26%), Eupatorium intermedium (RNT 7.56%, IVI 0.40%), Miconia ligustroides (RNT 5.84%, IVI 2.37%), Ossaea amygdaloides (RNT 3.84%, IVI 1.30%), Tibouchina sellowiana (RNT 3.29%, M 1.94%), Eup. inulaefolium (RNT = 2.65%, IVI = 0.80%), and Baccharis dracunculifolia (RNT = 2.28%; IVI = 0.56%). High values of IVI and RNT exhibited by the exotic species Eucalyptus saligna (IVI = 21.73%, RNT = 51.41%) indicated strong competition between exotic and indigenous species. Severe chemical (acidic pH and lack of nutrients) and physical (coarse substrate and slope angle of 40-50 degrees) characteristics displayed by the overburden piles constituted limitations to floristic diversity and size of indigenous trees, indicating the need for substrate reclamation prior to forest restoration.
Resumo:
This article reports major results from collaborative research between France and Brazil on soil and water systems, carried out in the Upper Amazon Basin. It reveals the weathering processes acting in the partly inundated, low elevation plateaus of the Basin, mostly covered by evergreen forest. Our findings are based on geochemical data and mineral spectroscopy that probe the crystal chemistry of Fe and Al in mineral phases (mainly kaolinite, Al- and Fe-(hydr)oxides) of tropical soils (laterites). These techniques reveal crystal alterations in mineral populations of different ages and changes of metal speciation associated with mineral or organic phases. These results provide an integrated model of soil formation and changes (from laterites to podzols) in distinct hydrological compartments of the Amazon landscapes and under altered water regimes. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.