63 resultados para forest treatments
Resumo:
In this paper, we report on range use patterns of birds in relation to tropical forest fragmentation. Between 2003 and 2005, three understorey passerine species were radio-tracked in five locations of a fragmented and in two locations of a contiguous forest landscape on the Atlantic Plateau of Sao Paulo in south-eastern Brazil. Standardized ten-day home ranges of 55 individuals were used to determine influences of landscape pattern, season, species, sex and age. In addition, total observed home ranges of 76 individuals were reported as minimum measures of spatial requirements of the species. Further, seasonal home ranges of recaptured individuals were compared to examine site fidelity. Chiroxiphia caudata, but not Pyriglena leucoptera or Sclerurus scansor, used home ranges more than twice as large in the fragmented versus contiguous forest. Home range sizes of C. caudata differed in relation to sex, age, breeding status and season. Seasonal home ranges greatly overlapped in both C. caudata and in S. scansor. Our results suggest that one response by some forest bird species to habitat fragmentation entails enlarging their home ranges to include several habitat fragments, whereas more habitat-sensitive species remain restricted to larger forest patches.
Resumo:
(Relief influence on tree species richness in secondary forest fragments of Atlantic Forest, SE, Brazil). The aim of this work was to explore the relationship between tree species richness and morphological characteristics of relief at the Ibiuna Plateau (SE Brazil). We sampled 61 plots of 0.30 ha, systematically established in 20 fragments of secondary forest (2-274 ha) and in three areas within a continuous secondary forest site, Morro Grande Reserve (9,400 ha). At each plot, 100 trees with diameter at breast height > 5 cm were sampled by the point centered quarter method, and total richness and richness per dispersal and succession class were obtained. The relief was characterized by the mean and variance of slope, elevation, aspect and slope location. There was no significant relationship between relief heterogeneity and tree species richness. Relief parameters generally did not affect tree richness, but elevation was particularly important especially in the continuous forest. Despite the limited range of altitudinal variation (150 m), species richness increases with elevation. The highest areas were also those with the largest forest cover and the lowest disturbance degree, which should contribute to the greater richness of those sites. Our results suggest an indirect influence of relief, due to the fact that deforestation is less intense in higher regions, rather than a direct influence of abiotic factors related to the altitudinal gradient.
Resumo:
Decomposition was studied in a reciprocal litter transplant experiment to examine the effects of forest type, litter quality and their interaction on leaf decomposition in four tropical forests in south-east Brazil. Litterbags were used to measure decomposition of leaves of one tree species from each forest type: Calophyllum brasiliense from restinga forest; Guapira opposita from Atlantic forest; Esenbeckia leiocarpa from semi-deciduous forest; and Copaifera langsdorffii from cerradao. Decomposition rates in rain forests (Atlantic and restinga) were twice as fast as those in seasonal forests (semi-deciduous and cerradao), suggesting that intensity and distribution of precipitation are important predictors of decomposition rates at regional scales. Decomposition rates varied by species, in the following order: E. leiocarpa > C. langsdorffii > G. opposita > C. brasiliense. However, there was no correlation between decomposition rates and chemical litter quality parameters: C:N, C:P, lignin concentration and lignin:N. The interaction between forest type and litter quality was positive mainly because C. langsdorffii decomposed faster than expected in its native forest. This is a potential indication of a decomposer`s adaptation to specific substrates in a tropical forest. These findings suggest that besides climate, interactions between decomposers and plants might play an essential role in decomposition processes and it must be better understood.
Resumo:
Land use leads to massive habitat destruction and fragmentation in tropical forests. Despite its global dimensions the effects of fragmentation on ecosystem dynamics are not well understood due to the complexity of the problem. We present a simulation analysis performed by the individual-based model FORMIND. The model was applied to the Brazilian Atlantic Forest, one of the world`s biodiversity hot spots, at the Plateau of Sao Paulo. This study investigates the long-term effects of fragmentation processes on structure and dynamics of different sized remnant tropical forest fragments (1-100 ha) at community and plant functional type (PFT) level. We disentangle the interplay of single effects of different key fragmentation processes (edge mortality, increased mortality of large trees, local seed loss and external seed rain) using simulation experiments in a full factorial design. Our analysis reveals that particularly small forest fragments below 25 ha suffer substantial structural changes, biomass and biodiversity loss in the long term. At community level biomass is reduced up to 60%. Two thirds of the mid- and late-successional species groups, especially shade-tolerant (late successional climax) species groups are prone of extinction in small fragments. The shade-tolerant species groups were most strongly affected; its tree number was reduced more than 60% mainly by increased edge mortality. This process proved to be the most powerful of those investigated, explaining alone more than 80% of the changes observed for this group. External seed rain was able to compensate approximately 30% of the observed fragmentation effects for shade-tolerant species. Our results suggest that tropical forest fragments will suffer strong structural changes in the long term, leading to tree species impoverishment. They may reach a new equilibrium with a substantially reduced subset of the initial species pool, and are driven towards an earlier successional state. The natural regeneration potential of a landscape scattered with forest fragments appears to be limited, as external seed rain is not able to fully compensate for the observed fragmentation-induced changes. Our findings suggest basic recommendations for the management of fragmented tropical forest landscapes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Edge effects are suggested to have great impact on the persistence of species in fragmented landscapes. We tested edge avoidance by forest understory passerines in the Brazilian Atlantic Rainforest and also compared their mobility and movement patterns in contiguous and fragmented landscapes to assess whether movements would increase in the fragmented landscape. Between 2003 and 2005, 96 Chiroxiphia caudata, 38 Pyriglena leucoptera and 27 Sclerurus scansor were radio-tracked. The most strictly forest species C. caudata and S scansor avoided forest edges while P leucoptera showed affinities for the edge Both sensitive species showed larger mean step length and maximal observed daily distance in the fragmented forest versus the unfragmented forest. P. leucoptera did not show any significant difference. There were no significant differences in proportional daily home range use for any of the three species. Our results suggested that fragmentation and the consequent increase in edge areas do influence movement behavior of sensitive forest understory birds that avoided the use of edges and increased the speed and distance they covered daily. For the most restricted forest species, it would be advisable to protect larger patches of forest instead of many small or medium fragments connected by narrow corridors. However, by comparing our data with that obtained earlier, we concluded that movement behavior of resident birds differs from that of dispersing birds and might not allow to infer functional connectivity or landscape-scale sensitivity to fragmentation; a fact that should be taken into consideration when suggesting conservation strategies. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Analysis of floristic similarity relationships between plant communities can detect patterns of species occurrence and also explain conditioning factors. Searching for such patterns, floristic similarity relationships among Atlantic Forest sites situated at Ibiuna Plateau, Sao Paulo state, Brazil, were analyzed by multivariate techniques. Twenty one forest fragments and six sites within a continuous Forest Reserve were included in the analyses. Floristic composition and structure of the tree community (minimum dbh 5 cm) were assessed using the point centered quarter method. Two methods were used for multivariate analysis: Detrended Correspondence Analysis (DCA) and Two-Way Indicator Species Analysis (TWINSPAN). Similarity relationships among the study areas were based on the successional stage of the community and also on spatial proximity. The more similar the successional stage of the communities, the higher the floristic similarity between them, especially if the communities are geographically close. A floristic gradient from north to south was observed, suggesting a transition between biomes, since northern indicator species are mostly heliophytes, occurring also in cerrado vegetation and seasonal semideciduous forest, while southern indicator species are mostly typical ombrophilous and climax species from typical dense evergreen Atlantic Forest.
Resumo:
We have used coalescent analysis of mtDNA cytochrome b (cyt b) sequences to estimate times of divergence of three species of Alouatta-A. caraya, A. belzebul, and A. guariba-which are in close geographic proximity. A. caraya is inferred to have diverged from the A. guariba/A. belzebul clade approximately 3.83 million years ago (MYA), with the later pair diverging approximately 1.55 MYA. These dates are much more recent than previous dates based on molecular-clock methods. In addition, analyses of new sequences from the Atlantic Coastal Forest species A. guariba indicate the presence of two distinct haplogroups corresponding to northern and southern populations with both haplogroups occurring in sympatry within Sao Paulo state. The time of divergence of these two haplogroups is estimated to be 1.2 MYA and so follows quite closely after the divergence of A. guariba and A. belzebul. These more recent dates point to the importance of Pleistocene environmental events as important factors in the diversification of A. belzebul and A. guariba. We discuss the diversification of the three Alouatta species in the context of recent models of climatic change and with regard to recent molecular phylogeographic analyses of other animal groups distributed in Brazil.
Resumo:
Here we describe the stomach contents of nine small mammal species (seven rodents and two didelphid marsupials) co-occurring in an old-growth Atlantic forest area. For four terrestrial rodents, we also compared the importance of arthropods in the diet and the selection of arthropod groups by comparing consumption with availability. Small mammals and arthropods were sampled in a 36-ha grid containing 25 sampling stations spaced every 150 m, and 47 stomach contents were analysed. While plant matter was the predominant item in the stomach contents of two rodents (Oligoryzomys nigripes and Rhipidomys mastacalis), four species presented arthropods as the main food item (the rodents Brucepattersonius soricinus and Oxymycterus dasytrichus, and the marsupials Monodelphis n. sp. and Marmosops incanus) and three consumed more plant matter than arthropods, but had significant amounts of both items (the rodents Delomys sublineatus, Euryoryzomys russatus and Thaptomys nigrita). Our results suggest that differences in diet, coupled with differences in habit and microhabitat preferences, are important factors allowing resource partition among species of the diverse group of co-occurring terrestrial small mammals in Atlantic forest areas. Moreover, arthropods were not preyed opportunistically by any of the four terrestrial rodents, since consumption was not proportional to availability. Rather, selection or rejection of arthropod groups seems to be determined by aspects other than availability, such as nutritional value, easiness of capture and handling or palatability.
Resumo:
The adaptive potential of a species to a changing environment and in disease defence is primarily based on genetic variation. Immune genes, such as genes of the major histocompatibility complex (MHC), may thereby be of particular importance. In marsupials, however, there is very little knowledge about natural levels and functional importance of MHC polymorphism, despite their key role in the mammalian evolution. In a previous study, we discovered remarkable differences in the MHC class II diversity between two species of mouse opossums (Gracilinanus microtarsus, Marmosops incanus) from the Brazilian Atlantic forest, which is one of the most endangered hotspots for biodiversity conservation. Since the main forces in generating MHC diversity are assumed to be pathogens, we investigated in this study gastrointestinal parasite burden and functional associations between the individual MHC constitution and parasite load. We tested two contrasting scenarios, which might explain differences in MHC diversity between species. We predicted that a species with low MHC diversity would either be under relaxed selection pressure by low parasite diversity (`Evolutionary equilibrium` scenario), or there was a recent loss in MHC diversity leading to a lack of resistance alleles and increased parasite burden (`Unbalanced situation` scenario). In both species it became apparent that the MHC class II is functionally important in defence against gastrointestinal helminths, which was shown here for the first time in marsupials. On the population level, parasite diversity did not markedly differ between the two host species. However, we did observe considerable differences in the individual parasite load (parasite prevalence and infection intensity): while M. incanus revealed low MHC DAB diversity and high parasite load, G. microtarsus showed a tenfold higher population wide MHC DAB diversity and lower parasite burden. These results support the second scenario of an unbalanced situation.
Resumo:
We tested the hypothesis that microhabitat variables, abundance of terrestrial rodents, and microhabitat selection patterns of terrestrial rodents vary between the cool-dry and warm-wet season in the Atlantic forest of Brazil. We selected variables associated with ecological factors potentially important to terrestrial rodents (physical structure of litter and woody debris, and arthropod availability) and established 25 small, independent sampling units covering 36 ha of a homogenous, mature Atlantic forest patch. Litter humidity and height, amount of small woody debris, arthropod availability, and terrestrial rodent abundance increased, whereas the quantity of large woody debris decreased in the warm-wet season. Greater spatial segregation among terrestrial rodents also was observed in this season, especially between morphologically similar species. The distribution of 3 of the 4 most common terrestrial rodents was influenced by microhabitat variables in at least I of the seasons, and these species also differed in their pattern of microhabitat selection between seasons. In general, the amount of small woody debris and litter humidity were more important for the microscale distribution of terrestrial rodents in the cool-dry season, whereas in the mild warm-wet season species distributions were associated with food availability or were not clearly influenced by the measured variables. The patterns of microhabitat selection by 3 common terrestrial rodents, which were associated with features that characterize old-growth forest, may be responsible for their vulnerability to forest fragmentation.
Resumo:
Of the three superfamilies of Ostracoda present in fresh water, only the Cytheroidea had thus far no records in terrestrial environments. Here, we report on a new genus and species, Intrepidocythere ibipora n. gen. n. sp., of the ostracod superfamily Cytheroidea, from forest leaf litter in Sao Paulo State, Brazil. Judging from morphological similarities, this new genus is believed to be closely related to the genus Elpidium. Possible pathways that led to the colonisation of terrestrial habitats are discussed, and an overview is given on the distribution of the known terrestrial ostracod lineages. The present findings strengthen the idea that terrestrial ostracods are more common than previously thought, at least in tropical areas.
Resumo:
Time-lagged responses of biological variables to landscape modifications are widely recognized, but rarely considered in ecological studies. In order to test for the existence of time-lags in the response of trees, small mammals, birds and frogs to changes in fragment area and connectivity, we studied a fragmented and highly dynamic landscape in the Atlantic forest region. We also investigated the biological correlates associated with differential responses among taxonomic groups. Species richness and abundance for four taxonomic groups were measured in 21 secondary forest fragments during the same period (2000-2002), following a standardized protocol. Data analyses were based on power regressions and model selection procedures. The model inputs included present (2000) and past (1962, 1981) fragment areas and connectivity, as well as observed changes in these parameters. Although past landscape structure was particularly relevant for trees, all taxonomic groups (except small mammals) were affected by landscape dynamics, exhibiting a time-lagged response. Furthermore, fragment area was more important for species groups with lower dispersal capacity, while species with higher dispersal ability had stronger responses to connectivity measures. Although these secondary forest fragments still maintain a large fraction of their original biodiversity, the delay in biological response combined with high rates of deforestation and fast forest regeneration imply in a reduction in the average age of the forest. This also indicates that future species losses are likely, especially those that are more strictly-forest dwellers. Conservation actions should be implemented to reduce species extinction, to maintain old-growth forests and to favour the regeneration process. Our results demonstrate that landscape history can strongly affect the present distribution pattern of species in fragmented landscapes, and should be considered in conservation planning. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Recent developments have highlighted the importance of forest amount at large spatial scales and of matrix quality for ecological processes in remnants. These developments, in turn, suggest the potential for reducing biodiversity loss through the maintenance of a high percentage of forest combined with sensitive management of anthropogenic areas. We conducted a multi-taxa survey to evaluate the potential for biodiversity maintenance in an Atlantic forest landscape that presented a favorable context from a theoretical perspective (high proportion of mature forest partly surrounded by structurally complex matrices). We sampled ferns, butterflies, frogs, lizards, bats, small mammals and birds in interiors and edges of large and small mature forest remnants and two matrices (second-growth forests and shade cacao plantations), as well as trees in interiors of small and large remnants. By considering richness, abundance and composition of forest specialists and generalists, we investigated the biodiversity value of matrix habitats (comparing them with interiors of large remnants for all groups except tree), and evaluated area (for all groups) and edge effects (for all groups except trees) in mature forest remnants. our results suggest that in landscapes comprising high amounts of mature forest and low contrasting matrices: (1) shade cacao plantations and second-growth forests harbor an appreciable number of forest specialists; (2) most forest specialist assemblages are not affected by area or edge effects, while most generalist assemblages proliferate at edges of small remnants. Nevertheless, differences in tree assemblages, especially among smaller trees, Suggest that observed patterns are unlikely to be stable over time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The present study describes and evaluates the horizontal and vertical structures of a lowland forest fragment on a hillock in the municipality of Silva Jardim, Rio de Janeiro State, Brazil (22 degrees 31`56 `` S and 42 degrees 20`46 `` W). Twenty plots (10x2m) totaling 0.5ha were laid out following the slope grade using DBH >= 5cm as the inclusion criterion. A total of 734 individuals were encountered, yielding a total density of 1468 ind./ha and a total basal area of 10783m(2). The richness values (129 species/41 families), Shannon-Wiener diversity (4.22) and equitability (0.87) indices indicated an accentuated floristic heterogeneity and low ecological dominance. Lauraceae, Myrtaceae, Fabaceae and Euphorbiaceae showed the greatest species richness, corroborating other studies that indicated these species as the most representative of Atlantic Forest areas in southeastern Brazil. The species with the greatest importance values (VI) were Aparisthmium cordatum, Guapira opposita, Lacistema pubescens, Xylopia sericea, Tapirira guianensis and Piptocarpha macropoda. The high diversity observed was influenced by earlier anthropogenic actions and by the current successional stage. The forest fragment studied demonstrated closer floristic similarity to areas inventoried in a close-by biological reserve than to fragments dispersed throughout the coastal plain. Similarities in soil type, degree of soil saturation and use-history of forest resources all support these relationships. The fragmented physiognomy of the central lowland in this region and the use-history of the landscape make these small remnant forest areas important in terms of establishing strategies for landscape restoration and species conservation.
Resumo:
Unequal sex ratios lead to the loss of genetic variability, decreasing the viability of populations in the long term. Anthropogenic activities often disturb the natural habitats and can cause alterations in sex ratio and morphological characteristics of several species. Forest fragmentation is a major conservation concern, so that understanding its effects in natural populations is essential. In this study, we evaluated the sex ratio and the morphological characteristics of Rufous Gnateaters (Conopophaga lineata (Wied, 1831)) in small and large forest fragments in Minas Gerais, Brazil. Birds (n = 89) were sexed by plumage characteristics and molecular markers. The molecular analysis showed that plumage is not a totally reliable method for sexing Rufous Gnateaters. We observed that sex ratio did not differ between large and small forest fragments, but birds in small fragments had larger wings and tarsus. Wing and tarsus changes may affect the movement ability of individuals within and among forest fragments. In conclusion, Rufous Gnateaters have been able to survive in both small and large Atlantic rain forest fragments without altering their sex ratio, but morphological changes can be prejudicial to their long term survival.