150 resultados para finite-dimensional quantum systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove a coordinatization theorem for noncommutative Jordan superalgebras of degree n > 2, describing such algebras. It is shown that the symmetrized Jordan superalgebra for a simple finite-dimensional noncommutative Jordan superalgebra of characteristic 0 and degree n > 1 is simple. Modulo a ""nodal"" case, we classify central simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One may construct, for any function on the integers, an irreducible module of level zero for affine sl(2) using the values of the function as structure constants. The modules constructed using exponential-polynomial functions realize the irreducible modules with finite-dimensional weight spaces in the category (O) over tilde of Chari. In this work, an expression for the formal character of such a module is derived using the highest weight theory of truncations of the loop algebra.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyze the finite-size corrections to entanglement in quantum critical systems. By using conformal symmetry and density functional theory, we discuss the structure of the finite-size contributions to a general measure of ground state entanglement, which are ruled by the central charge of the underlying conformal field theory. More generally, we show that all conformal towers formed by an infinite number of excited states (as the size of the system L -> infinity) exhibit a unique pattern of entanglement, which differ only at leading order (1/L)(2). In this case, entanglement is also shown to obey a universal structure, given by the anomalous dimensions of the primary operators of the theory. As an illustration, we discuss the behavior of pairwise entanglement for the eigenspectrum of the spin-1/2 XXZ chain with an arbitrary length L for both periodic and twisted boundary conditions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Finite-size scaling analysis turns out to be a powerful tool to calculate the phase diagram as well as the critical properties of two-dimensional classical statistical mechanics models and quantum Hamiltonians in one dimension. The most used method to locate quantum critical points is the so-called crossing method, where the estimates are obtained by comparing the mass gaps of two distinct lattice sizes. The success of this method is due to its simplicity and the ability to provide accurate results even considering relatively small lattice sizes. In this paper, we introduce an estimator that locates quantum critical points by exploring the known distinct behavior of the entanglement entropy in critical and noncritical systems. As a benchmark test, we use this new estimator to locate the critical point of the quantum Ising chain and the critical line of the spin-1 Blume-Capel quantum chain. The tricritical point of this last model is also obtained. Comparison with the standard crossing method is also presented. The method we propose is simple to implement in practice, particularly in density matrix renormalization group calculations, and provides us, like the crossing method, amazingly accurate results for quite small lattice sizes. Our applications show that the proposed method has several advantages, as compared with the standard crossing method, and we believe it will become popular in future numerical studies.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analytical predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper addresses the development of a hybrid-mixed finite element formulation for the quasi-static geometrically exact analysis of three-dimensional framed structures with linear elastic behavior. The formulation is based on a modified principle of stationary total complementary energy, involving, as independent variables, the generalized vectors of stress-resultants and displacements and, in addition, a set of Lagrange multipliers defined on the element boundaries. The finite element discretization scheme adopted within the framework of the proposed formulation leads to numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the equilibrium boundary conditions. This formulation consists, therefore, in a true equilibrium formulation for large displacements and rotations in space. Furthermore, this formulation is objective, as it ensures invariance of the strain measures under superposed rigid body rotations, and is not affected by the so-called shear-locking phenomenon. Also, the proposed formulation produces numerical solutions which are independent of the path of deformation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions compared with those obtained using the standard two-node displacement/ rotation-based formulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, a finite element model of a half-sectioned molar tooth was developed in order to understand the thermal behavior of dental hard tissues (both enamel and dentin) under laser irradiation. The model was validated by comparing it with an in vitro experiment where a sound molar tooth was irradiated by an Er,Cr:YSGG pulsed laser. The numerical tooth model was conceived to simulate the in vitro experiment, reproducing the dimensions and physical conditions of the typical molar sound tooth, considering laser energy absorption and calculating the heat transfer through the dental tissues in three dimensions. The numerical assay considered the same three laser energy densities at the same wavelength (2.79 mu m) used in the experiment. A thermographic camera was used to perform the in vitro experiment, in which an Er, Cr: YSGG laser (2.79 mu m) was used to irradiate tooth samples and the infrared images obtained were stored and analyzed. The temperature increments in both the finite element model and the in vitro experiment were compared. The distribution of temperature inside the tooth versus time plotted for two critical points showed a relatively good agreement between the results of the experiment and model. The three dimensional model allows one to understand how the heat propagates through the dentin and enamel and to relate the amount of energy applied, width of the laser pulses, and temperature inside the tooth. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2953526]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a comprehensive study of weak-localization and electron-electron interaction effects in a GaAs/InGaAs two-dimensional electron system with nearby InAs quantum dots, using measurements of the electrical conductivity with and without magnetic field. Although both the effects introduce temperature dependent corrections to the zero magnetic field conductivity at low temperatures, the magnetic field dependence of conductivity is dominated by the weak-localization correction. We observed that the electron dephasing scattering rate tau(-1)(phi), obtained from the magnetoconductivity data, is enhanced by introducing quantum dots in the structure, as expected, and obeys a linear dependence on the temperature and elastic mean free path, which is against the Fermi-liquid model. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2996034]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We construct an invisible quantum barrier which represents the phenomenon of quantum reflection using available data on atom-wall and Bose-Einstein-condensate-wall reflection. We use the Abel equation to invert the data. The resulting invisible quantum barrier is double valued in both axes. We study this invisible barrier in the case of atom and Bose-Einstein condensate (BEC) reflection from a solid silicon surface. A time-dependent, one-spatial-dimension Gross-Pitaevskii equation is solved for the BEC case. We found that the BEC behaves very similarly to the single atom except for size effects, which manifest themselves in a maximum in the reflectivity at small distances from the wall. The effect of the atom-atom interaction on the BEC reflection and correspondingly on the invisible barrier is found to be appreciable at low velocities and comparable to the finite-size effect. The trapping of an ultracold atom or BEC between two walls is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the superfield formalism, we study the ultraviolet properties of the three-dimensional super-symmetric quantum electrodynamics. The theory is shown to be finite at all loop orders in a particular gauge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximate to 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole ""snake states'' propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The energy spectrum of an electron confined in a quantum dot (QD) with a three-dimensional anisotropic parabolic potential in a tilted magnetic field was found analytically. The theory describes exactly the mixing of in-plane and out-of-plane motions of an electron caused by a tilted magnetic field, which could be seen, for example, in the level anticrossing. For charged QDs in a tilted magnetic field we predict three strong resonant lines in the far-infrared-absorption spectra.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the observation of microwave-induced resistance oscillations associated with the fractional ratio n/m of the microwave irradiation frequency to the cyclotron frequency for m up to 8 in a two-dimensional electron system with high electron density. The features are quenched at high microwave frequencies independent of the fractional order m. We analyze temperature, power, and frequency dependencies of the magnetoresistance oscillations and discuss them in connection with existing theories.