236 resultados para few-cycle ultrashort laser pulses
Resumo:
Although CO(2) laser irradiation can decrease enamel demineralisation, it has still not been clarified which laser wavelength and which irradiation conditions represent the optimum parameters for application as preventive treatment. The aim of the present explorative study was to find low-fluence CO(2) laser (lambda = 10.6 mu m) parameters resulting in a maximum caries-preventive effect with the least thermal damage. Different laser parameters were systematically evaluated in 3 steps. In the first experiment, 5 fluences of 0.1, 0.3, 0.4, 0.5 and 0.6 J/cm(2), combined with high repetition rates and 10 mu s pulse duration, were chosen for the experiments. In a second experiment, the influence of different pulse durations (5, 10, 20, 30 and 50 mu s) on the demineralisation of dental enamel was assessed. Finally, 3 different irradiation times (2, 5 and 9 s) were tested in a third experiment. In total, 276 bovine enamel blocks were used for the experiments. An 8-day pH-cycling regime was performed after the laser treatment. Demineralisation was assessed by lesion depth measurements with a polarised light microscope, and morphological changes were assessed with a scanning electron microscope. Irradiation with 0.3 J/cm(2), 5 mu s, 226 Hz for 9 s (2,036 overlapping pulses) increased caries resistance by up to 81% compared to the control and was even significantly better than fluoride application (25%, p < 0.0001). Scanning electron microscopy examination did not reveal any obvious damage caused by the laser irradiation. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Purpose: The aim of this in vitro study was to evaluate the microtensile bond strength (mu TBS) and hybrid layer morphology of different adhesive systems, either followed by treatment with Nd:YAG laser irradiation or not. Previous studies have shown the effects of Nd:YAG laser irradiation on the dentin surface at restoration margins, but there are few reports about the significance of the irradiation on the hybrid layer. Materials and Methods: The flattened coronal and root dentin samples of 24 bovine teeth were randomly divided into 8 groups, according to the adhesive system used - Scotchbond Multi Purpose (SBMP) or Clearfil SE Bond (CSEB) - and were either irradiated with Nd:YAG or not, with different parameters: 0.8 W/10 Hz, 0.8 W/20 Hz, 1.2 W/10 Hz, 1.2 W/20 Hz. The left sides of specimens were the control groups, and right sides were irradiated. A composite crown was built over bonded surfaces and stored in water (24 h at 37 degrees C). Specimens were sectioned vertically into slabs that were subjected to mu TBS testing and observed by SEM. Results: Control groups (27.81 +/- 1.38) showed statistically higher values than lased groups (21.37 +/- 0.99), and CSEB control group values (31.26 +/- 15.71) were statistically higher than those of SBMP (24.3 +/- 10.66). There were no significant differences between CSEB (20.34 +/- 10.01) and SBMP (22.43 +/- 9.82) lased groups. Among parameters tested, 0.8 W/10 Hz showed the highest value (25.54 +/- 11.74). Nd:YAG laser irradiation caused dentin to melt under the adhesive layer of both adhesive systems tested. Conclusion: With the parameters used in this study, Nd:YAG laser irradiation of the hybrid layer promoted morphological changes in dentin and negatively influenced the bond strength of both adhesive systems.
Resumo:
In the pregnant mouse uterus, small leucine-rich proteoglycans (SLRPs) are drastically remodeled within a few hours after fertilization, suggesting that ovarian hormone levels modulate their synthesis and degradation. In this study, we followed by immunoperoxidase approach, the presence of four members of the SLRP family (decorin, lumican, biglycan, and fibromodulin) in the uterine tissues along the estrous cycle of the mouse. All molecules except fibromodulin, which predominates in the myometrium, showed a striking modulation in their distribution in the endometrial stroma, following the rise in the level of estrogen. Moreover, notable differences in the distribution of SLRPs were observed between superficial and deep stroma, as well as between the internal and external layers of the myometrium. Only biglycan and fibromodulin were expressed in the luminal and glandular epithelia. All four SLRPs were found in cytoplasmic granules of mononucleated cells. The pattern of distribution of the immunoreaction for these molecules in the uterine tissues was found to be estrous cycle-stage dependent, suggesting that these molecules undergo ovarian hormonal control and probably participate in the preparation of the uterus for decidualization and embryo implantation. In addition, this and previous results from our laboratory suggest the existence of two subpopulations of endometrial fibroblasts that may be related to the centrifugal development of the decidua. Anat Rec, 292:138-153, 2009. (c) 2008 Wiley-Liss, Inc.
Resumo:
In this paper the large-scale mass transport mechanism is used to microstructure azopolymeric films, aiming at controllable hydrophobic surfaces. Using an Ar(+) laser with intensity of 70 mW/cm(2), we produced egg-crate-like surfaces with periods from 1.0 to 3.5 mu m that present distinct wetting properties. The static contact angle of water was measured on the microstructured surfaces, and the results revealed an increase of approximately 9 degrees for a surface pattern period of 2 mu m. Our results indicate the use of the microstructuring method described here for the fabrication of devices with controllable hydrophobicity.
Resumo:
This work demonstrates that the detuning of the fs-laser spectrum from the two-photon absorption band of organic materials can be used to reach further control of the two-photon absorption by pulse spectral phase manipulation. We investigate the coherent control of the two-photon absorption in imidazole-thiophene core compounds presenting distinct two-photon absorption spectra. The coherent control, performed using pulse phase shaping and genetic algorithm, exhibited different growth rates for each sample. Such distinct trends were explained by calculating the two-photon absorption probability considering the intrapulse interference mechanism, taking into account the two-photon absorption spectrum of the samples. Our results indicate that tuning the relative position between the nonlinear absorption and the pulse spectrum can be used as a novel strategy to optimize the two-photon absorption in broadband molecular systems. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the process of ablation produced by a Ti:Sapphire femtosecond laser under different average powers taking place at the enamel/dentin interface. Based on the geometry of ablated microcavities the effective intensity for ablation was obtained. This study shows the validity for the local effective intensity analysis and allows a quantification of the variation in the ablation geometry taking place at the interface of two naturally different materials. It shows that the variation of the diameter of the ablated region as a function of the cavity depth comes essentially from a mechanism of effective intensity attenuation, as a result of a series of complex effects. Additionally, our data are sufficient to predict that a discontinuity on the ablation profile will occur on the interface between two biological media: enamel-dentin, showing a suddenly jump on the ablated cavity dimensions.
Resumo:
In this paper we show the fabrication of hydrophobic polymeric surfaces through laser microstructuring. By using 70-ps pulses from a Q-switched and mode-locked Nd:YAG laser at 532 nm, we were able to produce grooves with different width and separation, resulting in square-shaped pillar patterns. We investigate the dependence of the morphology on the surface static contact angle for water, showing that it is in agreement with the Cassie-Baxter model. We demonstrate the fabrication of a superhydrophobic polymeric surface, presenting a water contact angle of 157 degrees. The surface structuring method presented here seems to be an interesting option to control the wetting properties of polymeric surfaces. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Noncarious cervical lesions (NCCLs) are considered to be of multifactorial origin, normally associated with inadequate brushing. This study assessed the influence in vitro of simulated brushing on NCCL formation. Fifteen human premolars were submitted to brushing in the cementoenamel junction region, using hard-, medium- and soft-bristled brushes associated with a toothpaste of medium abrasiveness under a 200 g load, at a speed of 356 rpm for 100 minutes. The surface topography of the region was analyzed before and after brushing, by means of a laser interferometer, using "cut-off" values of 0.25 and considering roughness values in mm. The initial roughness (mm) results for dentin (D / bristle consistency: 1 - soft, 2 - medium and 3 - hard) were as follows: (D1) 1.25 ± 0.45; (D2) 1.12 ± 0.44; (D3) 1.05 ± 0.41. For enamel (E / bristle consistency: 1 - soft, 2 - medium and 3 - hard), the initial results were: (E1) 1.18 ± 0.35; (E2) 1.32 ± 0.25; (E3) 1.50 ± 0.38. After brushing, the following were the values for dentin: (D1) 2.32 ± 1.99; (D2) 3.30 ± 0.96; (D3) Over 500. For enamel, the values after brushing were: (E1) 1.37 ± 0.31; (E2) 2.15 ± 0.90; (E3) 1.22 ± 0.47. Based on the results of the ANOVA and Tukey statistical analyses (a = .05) it was concluded that soft, medium and hard brushes are not capable of abrading enamel, whereas dentin showed changes in surface roughness by the action of medium- and hard-bristled brushes.
Resumo:
The aim of this study was to analyze the shear bond strength between commercially pure titanium, with and without laser welding, after airbone-particle abrasion (Al2O3) and 2 indirect composites. Sixty-four specimens were cast and divided into 2 groups with and without laser welding. Each group was divided in 4 subgroups, related to Al2O3 grain size: A - 250 µm; B - 180 µm; C- 110 µm; and D - 50 µm. Composite rings were formed around the rods and light polymerized using UniXS unit. Specimens were invested and their shear bond strength at failure was measured with a universal testing machine at a crosshead speed of 2.0 mm/min. Statistical analysis was carried out with ANOVA and Tukey's test (α=0.05). The highest bond strength means were recorded in 250 µm group without laser welding. The lowest shear bond strength means were recorded in 50 µm group with laser welding. Statistically significant differences (p<0.05) were found between all groups. In conclusion, airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Shear bond strength decreased in the laser welded specimens.
Resumo:
The aim of this study was to evaluate the effectiveness of low-level laser therapy (LLLT) on the improvement of the mandibular movements and painful symptoms in individuals with temporomandibular disorders (TMD). Forty patients were randomly divided into two groups (n=20): Group 1 received the effective dose (GaAlAs laser ? 830 nm, 40 mW, 5J/cm2) and Group 2 received the placebo application (0 J/cm2), in continuous mode on the affected condyle lateral pole: superior, anterior, posterior, and posterior-inferior, twice a week during 4 weeks. Four evaluations were performed: E1 (before laser application), E2 (right after the last application), E3 (one week after the last application) and E4 (30 days after the last application). The Kruskal-Wallis test showed significant more improvements (p<0.01) in painful symptoms in the treated group than in the placebo group. A significant improvement in the range of mandibular movements was observed when the results were compared between the groups at E4. Laser application can be a supportive therapy in the treatment of TMD, since it resulted in the immediate decrease of painful symptoms and increased range of mandibular movements in the treated group. The same results were not observed in the placebo group.
Resumo:
This in vitro study aimed to analyze the effect of different parameters of phototherapy with low intensity laser on the viability of human dental pulp fibroblasts under the effect of substances released by bleaching gel. Cells were seeded into 96 wells plates (1 x 10³ cells/well) and placed in contact with culture medium conditioned by a 35 % hydrogen peroxide bleaching gel for 40 minutes, simulating the clinical condition of the in-office bleaching treatment. Cells cultured in ideal growth conditions served as positive control group (PC), and the cells grown in conditioned medium and non-irradiated served as negative control group (NC). Cells grown in conditioned medium were submitted to a single irradiation with a diode laser (40 mW, 0.04 cm²) emitting at visible red (660 nm; RL) or near infrared (780 nm; NIR) using punctual technique, in contact mode and energy densities of 4, 6 or 10 J/cm². The cell viability was analyzed through the MTT reduction assay immediately and 24 hours after the irradiation. The data was compared by ANOVA followed by the Tukey's test (p < 0.05). The cell viability increased significantly in 24 hours within each group. The PC presented cell viability significantly higher than NC in both experimental times. Only the NIR/10 J/cm² group presented cell viability similar to that of PC in 24 hours. The phototherapy with low intensity laser in defined parameters is able to compensate the cytotoxic effects of substances released by 35 % hydrogen peroxide bleaching gel.
Resumo:
The purpose of this in vitro study was to evaluate the effect of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation on intracanal dentin surface by SEM analysis and its interference in the apical seal of filled canals. After endodontic treatment procedures, 34 maxillary human incisors were randomly assigned to 2 groups. In the negative control group (n=17), no additional treatment was performed and teeth were filled with vertically condensed gutta-percha; in the laser-treated group (n=17), the root canals were irradiated with Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) before filling as described for the control group. Two specimens of each group were prepared for SEM analysis to evaluate the presence and extent of morphological changes and removal of debris; the other specimens were immersed in 0.5% methylene blue dye (pH 7.2) for 24 h for evaluation of the linear dye leakage at the apical third. SEM analysis of the laser-treated group showed dentin fusion and resolidification without smear layer or debris. The Student’s t-test showed that the laser-treated group had significantly less leakage in apical third than the control group. Within the limitations of this study, it may be concluded that the morphological changes on the apical intraradicular dentin surface caused by Nd:YAG laser resulted in less linear dye apical leakage.
Resumo:
OBJECTIVE: To analyze the amount of glycosaminoglycans in the uterine cervix during each phase of the rat estrous cycle. DESIGN: Based on vaginal smears, forty female, regularly cycling rats were divided into four groups (n = 10 for each group): GI - proestrous, GII - estrous, GIII - metaestrous and GIV - diestrous. Animals were sacrificed at each phase of the cycle, and the cervix was immediately removed and submitted to biochemical extraction and determination of sulfated glycosaminoglycans and hyaluronic acid. The results were analyzed by ANOVA followed by the Bonferroni post-hoc test. RESULTS: The uterine cervix had the highest amount of total sulfated glycosaminoglycans and dermatan sulfate during the estrous phase (8.90 ± 0.55 mg/g of cetonic extract, p<0.001; and 8.86 ± 0.57 mg/g of cetonic extract, p<0.001). In addition, there was more heparan sulfate at the cervix during the proestrous phase (0.185 ± 0.03 mg/g of cetonic extract) than during any other phase (p<0.001). There were no significant changes in the concentration of hyaluronic acid in the uterine cervix during the estrous cycle. CONCLUSION: Our data suggest that the amount of total sulfated glycosaminoglycans may be influenced by hormonal fluctuations related to the estrous cycle, with dermatan sulfate and heparan sulfate being the glycosaminoglycans most sensitive to hormonal change.
Resumo:
PURPOSE: To evaluate the mitochondrial function of the remnant liver (RL) in the early phase of liver regeneration in rats after 70% partial hepatectomy (PH). METHODS: Sixty male Wistar rats (200-250g) submitted to 70% PH were divided into five groups according to the time of euthanasia and application or not of laser light: C = Control, time zero; 2 minutes, 4, 6 and 24 hours after PH. The dose of laser radiation was 22.5 J/cm², wavelength of 660 nm (visible/red), in the remnant liver. We studied the respiration activated by ADP (state 3), basal mitochondrial respiration (state 4), respiratory control ratio (RCR) and mitochondrial membrane potential (MMP). RESULTS: The mitochondrial function of RL changed at 4 and 6 hours after PH, with a significant increase in state 3 and a concomitant increase in state 4 and with maintenance of RCR. MMP differed significantly between the groups biostimulated with laser radiation and the control group 4 hours after HP, with a substantial reduction in the non-laser groups. CONCLUSION: The laser light at the dose used in this study did not induce additional damage to the RL and seems to have delayed the hepatocellular metabolic overload of the remnant liver.