143 resultados para existence of solutions
Resumo:
We establish the existence of mild solutions for a class of impulsive second-order partial neutral functional differential equations with infinite delay in a Banach space. (C) 2009 Published by Elsevier Ltd
Resumo:
This work is concerned with implicit second order abstract differential equations with nonlocal conditions. Assuming that the involved operators satisfy sonic compactness properties, we establish the existence of local mild solutions, the existence of global mild solutions and the existence of asymptotically almost periodic solutions.
Resumo:
In this paper we study the existence of mild solutions for a class of first order abstract partial neutral differential equations with state-dependent delay. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We consider the two-dimensional Navier-Stokes equations with a time-delayed convective term and a forcing term which contains some hereditary features. Some results on existence and uniqueness of solutions are established. We discuss the asymptotic behaviour of solutions and we also show the exponential stability of stationary solutions.
Resumo:
By using the theory of semigroups of growth a, we discuss the existence of mild solutions for a class of abstract neutral functional differential equations. A concrete application to partial neutral functional differential equations is considered. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We study the existence of mild solutions for a class of impulsive neutral functional differential equation defined on the whole real axis. Some concrete applications to ordinary and partial neutral differential equations with impulses are considered. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we discuss the existence of alpha-Holder classical solutions for non-autonomous abstract partial neutral functional differential equations. An application is considered.
Resumo:
We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (sigma-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (Delta pi-family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system. The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low-moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions. Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.
Resumo:
Clustering is a difficult task: there is no single cluster definition and the data can have more than one underlying structure. Pareto-based multi-objective genetic algorithms (e.g., MOCK Multi-Objective Clustering with automatic K-determination and MOCLE-Multi-Objective Clustering Ensemble) were proposed to tackle these problems. However, the output of such algorithms can often contains a high number of partitions, becoming difficult for an expert to manually analyze all of them. In order to deal with this problem, we present two selection strategies, which are based on the corrected Rand, to choose a subset of solutions. To test them, they are applied to the set of solutions produced by MOCK and MOCLE in the context of several datasets. The study was also extended to select a reduced set of partitions from the initial population of MOCLE. These analysis show that both versions of selection strategy proposed are very effective. They can significantly reduce the number of solutions and, at the same time, keep the quality and the diversity of the partitions in the original set of solutions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Existence of positive solutions for a fourth order equation with nonlinear boundary conditions, which models deformations of beams on elastic supports, is considered using fixed points theorems in cones of ordered Banach spaces. Iterative and numerical solutions are also considered. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
In this paper we show the existence of multiple solutions to a class of quasilinear elliptic equations when the continuous non-linearity has a positive zero and it satisfies a p-linear condition only at zero. In particular, our approach allows us to consider superlinear, critical and supercritical nonlinearities. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
In this paper we establish the existence of standing wave solutions for quasilinear Schrodinger equations involving critical growth. By using a change of variables, the quasilinear equations are reduced to semilinear one. whose associated functionals are well defined in the usual Sobolev space and satisfy the geometric conditions of the mountain pass theorem. Using this fact, we obtain a Cerami sequence converging weakly to a solution v. In the proof that v is nontrivial, the main tool is the concentration-compactness principle due to P.L. Lions together with some classical arguments used by H. Brezis and L. Nirenberg (1983) in [9]. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This work is concerned with the existence of monotone positive solutions for a class of beam equations with nonlinear boundary conditions. The results are obtained by using the monotone iteration method and they extend early works on beams with null boundary conditions. Numerical simulations are also presented. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the existence of global solutions for a class of impulsive abstract functional differential equation. An application involving a parabolic system With impulses is considered. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We study generalized viscous Cahn-Hilliard problems with nonlinearities satisfying critical growth conditions in W-0(1,p)(Omega), where Omega is a bounded smooth domain in R-n, n >= 3. In the critical growth case, we prove that the problems are locally well posed and obtain a bootstrapping procedure showing that the solutions are classical. For p = 2 and almost critical dissipative nonlinearities we prove global well posedness, existence of global attractors in H-0(1)(Omega) and, uniformly with respect to the viscosity parameter, L-infinity(Omega) bounds for the attractors. Finally, we obtain a result on continuity of regular attractors which shows that, if n = 3, 4, the attractor of the Cahn-Hilliard problem coincides (in a sense to be specified) with the attractor for the corresponding semilinear heat equation. (C) 2008 Elsevier Inc. All rights reserved.