154 resultados para eccentric mass shaker
Resumo:
It has been suggested that muscle tension plays a major role in the activation of intracellular pathways for skeletal muscle hypertrophy via an increase in mechano growth factor (MGF) and other downstream targets. Eccentric exercise (EE) imposes a greater amount of tension on the active muscle. In particular, high-speed EE seems to exert an additional effect on muscle tension and, thus, on muscle hypertrophy. However, little is known about the effect of EE velocity on hypertrophy signaling. This study investigated the effect of acute EE-velocity manipulation on the Akt/mTORCI/p70(S6K) hypertrophy pathway. Twenty subjects were assigned to either a slow (20 degrees.s(-1); ES) or fast EE (210 degrees.s(-1); EF) group. Biopsies were taken from vastus lateralis at baseline (B), immediately after (T1), and 2 h after (T2) the completion of 5 sets of 8 repetitions of eccentric knee extensions. Akt, mTOR, and p70(S6K) total protein were similar between groups, and did not change postintervention. Further, Akt and p70(S6K) protein phosphorylation were higher at T2 than at B for ES and EF. MGF messenger RNA was similar between groups, and only significantly higher at T2 than at B in ES. The acute manipulation of EE velocity does not seem to differently influence intracellular hypertrophy signaling through the Akt/mTORCI/p70S6K pathway.
Resumo:
This work was undertaken to provide further insight into the role of mammalian target of rapamycin complex 1 (mTORC1) in skeletal muscle regeneration, focusing on myofiber size recovery. Rats were treated or not with rapamycin, an mTORC1 inhibitor. Soleus muscles were then subjected to cryolesion and analyzed 1, 10, and 21 days later. A decrease in soleus myofiber cross-section area on post-cryolesion days 10 and 21 was accentuated by rapamycin, which was also effective in reducing protein synthesis in these freeze-injured muscles. The incidence of proliferating satellite cells during regeneration was unaltered by rapamycin, although immunolabeling for neonatal myosin heavy chain (MHC) was weaker in cryolesion+rapamycin muscles than in cryolesion-only muscles. In addition, the decline in tetanic contraction of freeze-injured muscles was accentuated by rapamycin. This study indicates that mTORC1 plays a key role in the recovery of muscle mass and the differentiation of regenerating myofibers, independently of necrosis and satellite cell proliferation mechanisms. Muscle Nerve 42: 778-787,2010
Resumo:
Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via beta(2)-adrenoceptor (beta(2)-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, alpha(2A)-AR and alpha(2C)-AR(alpha(2A)/alpha(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In alpha(2A)/alpha(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (mu CT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-kappa B (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial beta(2)-AR mRNA expression also was similar in KO and WT littermates, whereas alpha(2A)-, alpha(2B)- and alpha(2C)-AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected alpha(2A)-, alpha(2B)-, alpha(2C)- and beta(2)-ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective alpha(2)-AR agonist clonidine and to the nonspecific alpha-AR antagonist phentolamine. These findings suggest that beta(2)-AR is not the single adrenoceptor involved in bone turnover regulation and show that alpha(2)-AR signaling also may mediate the SNS actions in the skeleton. (c) 2011 American Society for Bone and Mineral Research.
Effect of eccentric contraction velocity on muscle damage in repeated bouts of elbow flexor exercise
Resumo:
Eccentric exercise induces muscle damage, but controversy exists concerning the effect of contraction velocity on the magnitude of muscle damage, and little is known about the effect of contraction velocity on the repeated-bout effect. This study examined slow (60 degrees.s(-1)) and fast (180 degrees.s(-1)) velocity eccentric exercises for changes in indirect markers of muscle damage following 3 exercise bouts that were performed every 2 weeks. Fifteen young men were divided into 2 groups based on the velocity of eccentric exercise: 7 in the Ecc60 (60 degrees.s(-1)) group, and 8 in the Ecc180 (180 degrees.s(-1)) group. The exercise consisted of 30 maximal eccentric contractions of the elbow flexors at each velocity, in which the elbow joint was forcibly extended from 60 degrees to 180 degrees (full extension) on an isokinetic dynamometer. Changes in maximal voluntary isometric contraction strength, range of motion, muscle soreness, and plasma creatine kinase activity before and for 4 days after the exercise were compared in the 2 groups using a mixed-model analysis (group x bout x time). No significant differences between groups were evident for changes in any variables following exercise bouts; however, the changes were significantly smaller (p < 0.05) after the second and third bouts than after the first bout. These results indicate that the contraction velocity does not influence muscle damage or the repeated-bout effect.
Resumo:
The purpose of the present study was to test if a previous acute concentric exercise bout blunts hGH response after an eccentric exercise bout. Nine healthy untrained male university students (25.4 +/- 0.5 yr, 176.5 +/- 1.2 cm, and 79.4 +/- 2.0 kg) performed a concentric exercise bout followed by an eccentric exercise bout one week later. Serum human growth hormone (hGH), creatine kinase (CK), and lactate were measured before, immediately and up to 32 h after both exercise bouts. Higher lactate values were observed immediately, 5 and 10 min after the concentric bout (70%, 119%, and 142%, respectively, p < 0.05) than the eccentric bout. There was a CK main time effect at 8 and 32 h after the exercise bouts compared to baseline values (p < 0.002). However, peak serum CK effect size was higher after the concentric than the eccentric exercise bout, 1.3 and 0.9, respectively. hGH increased after both exercise bouts, however it reached significance only at immediately (207%), 5 min (256%), 10 min (276%), 20 min (300%), and 40 min (168%) after the concentric exercise bout (p < 0.05). Our findings suggest that a previous concentric exercise bout may blunt the anabolic response expected after an eccentric exercise bout.
Resumo:
For percentage of body fat (%BF), there are no internationally accepted cutoffs. The primary function of body fat cutoffs should be to identify not only excessive body fatness, but also the increased risk of unhealthy outcomes, such as hypertension. The purpose of this study was to analyze the accuracy of different %BF and body mass index (BMI) cutoffs as screening measures for EBP in pediatric populations. It was a cross-sectional study with a sample of 358 male subjects from 8 to 18 years old. BP was measured by the oscilometric method, and body composition was measured by dual-energy X-ray absorptiometry (DXA). The accuracy of three reference tables used for body fat cutoffs was assessed. The three body fat reference tables were highly specific, but insensitive, for elevated BP screening. For elevated BP screening, all body fat cutoffs presented similar sensitivity (range=48.3-53.7%) and specificity (range=79.2-84.1%). The body fat cutoffs performed no better than BMI in screening of children and adolescents at risk of elevated BP (EBP). BMI seems a more attractive tool for this function, as it performed similarly and can be applied in large surveys and with lower costs. Hypertension Research (2011) 34, 963-967; doi:10.1038/hr.2011.61; published online 26 May 2011
Resumo:
In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.
Resumo:
On-line leak detection is a main concern for the safe operation of pipelines. Acoustic and mass balance are the most important and extensively applied technologies in field problems. The objective of this work is to compare these leak detection methods with respect to a given reference situation, i.e., the same pipeline and monitoring signals acquired at the inlet and outlet ends. Experimental tests were conducted in a 749 m long laboratory pipeline transporting water as the working fluid. The instrumentation included pressure transducers and electromagnetic flowmeters. Leaks were simulated by opening solenoid valves placed at known positions and previously calibrated to produce known average leak flow rates. Results have clearly shown the limitations and advantages of each method. It is also quite clear that acoustics and mass balance technologies are, in fact, complementary. In general, an acoustic leak detection system sends out an alarm more rapidly and locates the leak more precisely, provided that the rupture of the pipeline occurs abruptly enough. On the other hand, a mass balance leak detection method is capable of quantifying the leak flow rate very accurately and of detecting progressive leaks.
Resumo:
The aim of this study is to quantify the mass transfer velocity using turbulence parameters from simultaneous measurements of oxygen concentration fields and velocity fields. The surface divergence model was considered in more detail, using data obtained for the lower range of beta (surface divergence). It is shown that the existing models that use the divergence concept furnish good predictions for the transfer velocity also for low values of beta, in the range of this study. Additionally, traditional conceptual models, such as the film model, the penetration-renewal model, and the large eddy model, were tested using the simultaneous information of concentration and velocity fields. It is shown that the film and the surface divergence models predicted the mass transfer velocity for all the range of the equipment Reynolds number used here. The velocity measurements showed viscosity effects close to the surface, which indicates that the surface was contaminated with some surfactant. Considering the results, this contamination can be considered slight for the mass transfer predictions. (C) 2009 American Institute of Chemical Engineers AIChE J, 56: 2005-2017; 2010
Resumo:
Mass transfer across a gas-liquid interface was studied theoretically and experimentally, using transfer of oxygen into water as the gas-liquid system. The experimental results support the conclusions of a theoretical description of the concentration field that uses random square waves approximations. The effect of diffusion over the concentration records was quantified. It is shown that the peak of the normalized rills concentration fluctuation profiles must be lower than 0.5, and that the position of the peak of the rms value is an adequate measure of the thickness of the diffusive layer. The position of the peak is the boundary between the regions more subject to molecular diffusion or to turbulent transport of dissolved mass.
Resumo:
The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees-inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO(3)/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees-inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees-inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3) m(3)). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Thermoplastic starch (TPS) was modified with ascorbic acid and citric acid by melt processing of native starch with glycerol as plasticizer in an intensive batch mixer at 160 degrees C. It was found that the molar mass decreases with acid content and processing time causing the reduction in melting temperature (T(m)). As observed by the results of X-ray diffraction and DSC measurements, crystallinity was not changed by the reaction with organic acids. T(m) depression with falling molar mass was interpreted on the basis of the effect of concentration of end-chain units, which act as diluents. FTIR did not show any appreciable change in starch chemical compositions, leading to the conclusion that the main changes observed were produced by the variation in molar mass of the material. We demonstrated that it is possible to decrease melt viscosity without the need for more plasticizer thus avoiding side-effects such as an increase in water affinity or relevant changes in the dynamic mechanical properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A two-dimensional numeric simulator is developed to predict the nonlinear, convective-reactive, oxygen mass exchange in a cross-flow hollow fiber blood oxygenator. The numeric simulator also calculates the carbon dioxide mass exchange, as hemoglobin affinity to oxygen is affected by the local pH value, which depends mostly on the local carbon dioxide content in blood. Blood pH calculation inside the oxygenator is made by the simultaneous solution of an equation that takes into account the blood buffering capacity and the classical Henderson-Hasselbach equation. The modeling of the mass transfer conductance in the blood comprises a global factor, which is a function of the Reynolds number, and a local factor, which takes into account the amount of oxygen reacted to hemoglobin. The simulator is calibrated against experimental data for an in-line fiber bundle. The results are: (i) the calibration process allows the precise determination of the mass transfer conductance for both oxygen and carbon dioxide; (ii) very alkaline pH values occur in the blood path at the gas inlet side of the fiber bundle; (iii) the parametric analysis of the effect of the blood base excess (BE) shows that V(CO2) is similar in the case of blood metabolic alkalosis, metabolic acidosis, or normal BE, for a similar blood inlet P(CO2), although the condition of metabolic alkalosis is the worst case, as the pH in the vicinity of the gas inlet is the most alkaline; (iv) the parametric analysis of the effect of the gas flow to blood flow ratio (Q(G)/Q(B)) shows that V(CO2) variation with the gas flow is almost linear up to Q(G)/Q(B) = 2.0. V(O2) is not affected by the gas flow as it was observed that by increasing the gas flow up to eight times, the V(O2) grows only 1%. The mass exchange of carbon dioxide uses the full length of the hollow-fiber only if Q(G)/Q(B) > 2.0, as it was observed that only in this condition does the local variation of pH and blood P(CO2) comprise the whole fiber bundle.
Resumo:
Oxidation processes are used in wastewater treatment when conventional processes are not effective due to the presence of recalcitrant organic contaminants, like phenol. However, the presence of ionic compounds associated with organic pollutants may retard the oxidation. In this work the transport of species contained in an aqueous solution of phenol containing sodium chloride was evaluated in an electrodialysis (ED) system. An experimental study was carried out in which the influence of the process variables on the phenol loss and sodium chloride removal was investigated. Experiments were also performed without current, in order to determine the phenol transfer due to diffusion. The phenol and salt concentration variations in the ED compartments were measured over time, using dedicated procedures and an experimental design to determine the global characteristic parameters. A phenomenological approach was used to relate the phenol, salt and water fluxes with the driving forces (concentration and electric potential gradients). Under ED conditions, two contributions were pointed out for the phenol transport, i.e. diffusion and convection, this latter coming from the water flux due to electroosmosis related to the migration of salts. The fitting of the parameters of the transport equations resulted in good agreement with the experimental results over the range of conditions investigated. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The simultaneous use of different sensors technologies is an efficient method to increase the performance of chemical sensors systems. Among the available technologies, mass and capacitance transducers are particularly interesting because they can take advantage also from non-conductive sensing layers, such as most of the more interesting molecular recognition systems. In this paper, an array of quartz microbalance sensors is complemented by an array of capacitors obtained from a commercial biometrics fingerprints detector. The two sets of transducers, properly functionalized by sensitive molecular and polymeric films, are utilized for the estimation of adulteration in gasolines, and in particular to quantify the content of ethanol in gasolines, an application of importance for Brazilian market. Results indicate that the hybrid system outperforms the individual sensor arrays even if the quantification of ethanol in gasoline, due to the variability of gasolines formulation, is affected by a barely acceptable error. (C) 2009 Elsevier B.V. All rights reserved.