36 resultados para docosahexaenoic acids
Resumo:
A capillary electrophoresis method for organic acids in wine was developed and validated. The optimal electrolyte consisted of 10 mmol/L 3,5-dinitrobenzoic acid (DNB) at pH 3.6 containing 0.2 mmol/L cetyltrimethylammonium bromide as flow reverser. DNB was chosen because it has an effective mobility similar to the organic acids under investigation, good buffering capacity at pH 3.6, and good chromophoric characteristics for indirect UV-absorbance detection at 254 nm. Sample preparation involved dilution and filtration. The method showed good performance characteristics: Linearity at 6 to 285 mg/L (r > 0.99); detection and quantification limits of 0.64 to 1.55 and 2.12 to 5.15 mg/L, respectively; separation time of less than 5.5 min. Coefficients of variation for ten injections were less than 5% and recoveries varied from 95% to 102%. Application to 23 samples of Brazilian wine confirmed good repeatability and demonstrated wide variation in the organic acid concentrations. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An analytical procedure for the separation and quantification of 20 amino acids in cachacas has been developed involving C18 solid phase cleanup, derivatization with o-phthalaldehyde/2-mercaptoethanol, and reverse phase liquid chromatography with fluorescence detection. The detection limit was between 0.0050 (Cys) and 0.25 (Ser) mg L-1, whereas the recovery index varies from 69.5 (Lys) to 100 (Tyr)%. Relative standard deviations vary from 1.39 (Trp) to 13.4 (Glu)% and from 3.08 (Glu) to 13.5 (His) for the repeatability and intermediate precision, respectively. From the quantitative profile of amino acids in 41 cachacas, 5 turns, and 12 whisky samples, the following order of amino acids in significant quantities is observed: Gly = Ser < Cys < Ile < His < Pro = Asp < Asn < Tyr for cachaca; Phe < Glu = Gln = Val = Ala < His = Gly Thr = Arg = Tyr < Asn Ser = Lys = Pro < Cys = Asp for rum; and Ala = Asn < Trp < Gln = His = Met = Ile = Cys < Thr < Asp Leu < Phe = Lys < Ser = Gly = Tyr = Val < Glu = Pro < Arg for whisky samples. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a CE equipment, online hyphenated to an IT MS analyzer by a linear sheath liquid interface promoting ESI, was used to develop a method for quantitative determination of amino acids. Under appropriate conditions (BGE composition, 0.8% HCOOH, 20% CH(3)OH; sheath liquid composition, 0.8% HCOOH, 60% methanol; V(ESI), +4.50 W), analytical curves of all amino acids from 3 to 80 mg/L were recorded presenting acceptable linearity (r > 0.99). LODs in the range of 16-172 mu mol/L were obtained. BSA, a model protein, was submitted to different hydrolysis procedures (classical acid and basic, and catalyzed by the H(+) form of a cation exchanger resin) and its amino acid profiles determined. In general, the resin-mediated hydrolysis yields were overall similar or better than those obtained by classical acid or basic hydrolysis. The resulting experimental-to-theoretical BSA concentration ratios served as correction factors for the quantitation of amino acids in Brazil nut resin generated hydrolysates.
Resumo:
The iso-alpha-acids or isohumulones are the major contributors to the bitter taste of beer, and it is well-recognized that they are degraded during beer aging. In particular, the trans-isohumulones seem to be less stable than the cis-isohumulones. The major radical identified in beer is the 1-hydroxyethyl radical; however, the reactivity between this radical and the isohumulones has not been reported until now. Therefore, we studied the reactivity of isohumulones toward the 1-hydroxyethyl radical through a competitive kinetic approach. It was observed that both cis- and trans-isohumulones and dihydroisohumulones are decomposed in the presence of 1-hydroxyethyl radicals, while the reactivities are comparable. On the other hand, the tetrahydroisohumulones did not react with 1-hydroxyethyl radicals. The apparent second-order rate constants for the reactions between the 1-hydroxyethyl radical and these compounds were determined by electron paramagnetic resonance (EPR) spectroscopy and electrospray ionization-tandem mass spectrometry [ESI(+)-MS/MS]. It follows that degradation of beer bitter acids is highly influenced by the presence of 1-hydroxyethyl radicals. The reaction products were detected by liquid chromatography electrospray ionization-ion trap-tandem mass spectrometry (LC-ESI-IT-MS/MS), and the formation of oxidized derivatives of the isohumulones was confirmed. These data help to understand the mechanism of beer degradation upon aging.
Resumo:
The presence of paramagnetic species in the aqueous ring opening metathesis polymerizations of the exo,exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomer with RuCl(3) and K(2)[RuCl(5)H(2)O] compounds was studied using ESR techniques. It was observed that the intensities of the Ru(III) signals in the ESR spectra decrease on the time scale of the induction period so that the ROMP can take place. The intensity of the Ru(III) signal almost disappeared 50 min after reacting with K(2)[RuCl(5)H(2)O] and after 100 mm in the case of RuCl(3). Reactions of the cis-[Ru(NH(3))(4)(H(2)O)(2)](tfms)(3) and [Ru(NH(3))(5)H(2)O](tfms)(3) complexes with the monomer and different organic compounds representing the organic functions in the monomer (furan, norbornene, but-2-ene-1,4-diol and formic, acetic, oxalic and maleic acids) were also monitored by ESR and UV/vis spectra. It was deduced that the organic acids provide the disappearance of the Ru(III) signal. The proton NMR relaxation times of the residual water in D(2)O for reactions with oxalic acid suggested that the presence of paramagnetic ions in the solution decreases along with
Resumo:
This study describes the synthesis of novel biological hybrid materials, where 3D structures were obtained using gold nanoparticles (AuNps) and methionine (Met) in a one-step procedure in aqueous media. The type of nanostructure can be controlled by tuning the intermolecular interactions between Met and AuNp, which strongly depends on the pH used for the synthesis. Computational simulation using the density-functional theory (DFT) showed that the AuNp - Met 3D structures are formed upon reorientation of Met molecules so that the backbone amine groups interact via H-bonds. These findings were experimentally confirmed using FTIR and UV-vis spectroscopy. Crown Copyright (C) 2008 Published by Elsevier B. V. All rights reserved.