38 resultados para cytoplasm vesicle
Resumo:
The solubilization of lipid bilayers by detergents was studied with optical microscopy of giant unilamellar vesicles (GUVs) composed of palmitoyl oleoyl phoshatidylcholine (POPC). A solution of the detergents Triton X-100 (TX-100) and sodium dodecyl sulfate (SDS) was injected with a micropipette close to single GUVs. The solubilization process was observed with phase contrast and fluorescence microscopy and found to be dependent on the detergent nature. In the presence of TX-100, GUVs initially showed an increase in their surface area, due to insertion of TX-100 with rapid equilibration between the two leaflets of the bilayer. Then, above a solubility threshold, several holes opened, rendering the bilayer a lace fabric appearance, and the bilayer gradually vanished. On the other hand, injection of SDS caused initially an increase in the membrane spontaneous curvature, which is mainly associated with incorporation of SDS in the outer layer only. This created a stress in the membrane, which caused either opening of transient macropores with substantial decrease in vesicle size or complete vesicle bursting. In another experimental setup, the extent of solubilization/destruction of a collection of GUVs was measured as a function of either TX-100 or SDS concentration.
Resumo:
This work summarizes results obtained on membranes composed of the ternary mixture dioleoylphosphatidylglycerol (DOPG), egg sphingomyelin (eSM) and cholesterol (Chol). The membrane phase state as a function of composition is characterized from data collected with fluorescence microscopy on giant unilamellar vesicles. The results suggest that the presence of the charged DOPG significantly decreases the composition region of coexistence of liquid ordered and liquid disordered phases as compared to that in the ternary mixture of dioleoylphosphatidycholine, sphingomyelin and cholesterol. The addition of calcium chloride to DOPG:eSM:Chol vesicles, and to a lesser extent the addition of sodium chloride, leads to the stabilization of the two-phase coexistence region, which is expressed in an increase in the miscibility temperature. On the other hand, addition of the chelating agent EDTA has the opposite effect, suggesting that impurities of divalent cations in preparations of giant vesicles contribute to the stabilization of charged domains. We also explore the behavior of these membranes in the presence of extruded unilamellar vesicles made of the positively charged lipid dioleoyltrimethylammoniumpropane (DOTAP). The latter can induce domain formation in DOPG:eSM:Chol vesicles with initial composition in the one-phase region. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The potential profile for a model of squid axon membrane has been determined for two physiological states: resting and action states. The non-linear Poisson-Boltzmann equation has been solved by considering the volumetric charge densities due to charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmatic proteins. Results showing the features of the potential profile along the outer electrolytic region are similar for both resting and action states. However, the potential fall along glycocalyx at action state is lower than at resting. A small variation in the Na+ concentration drastically affects the surface membrane potentials and vice versa. We conclude that effects on the potential profile due to surface lipidic bilayer charge and contiguous electric double layers are more relevant than those provoked by fixed charges distributed along the cell cytoplasm. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The coexistence between different types of templates has been the choice solution to the information crisis of prebiotic evolution, triggered by the finding that a single RNA-like template cannot carry enough information to code for any useful replicase. In principle, confining d distinct templates of length L in a package or protocell, whose Survival depends on the coexistence of the templates it holds in, could resolve this crisis provided that d is made sufficiently large. Here we review the prototypical package model of Niesert et al. [1981. Origin of life between Scylla and Charybdis. J. Mol. Evol. 17, 348-353] which guarantees the greatest possible region of viability of the protocell population, and show that this model, and hence the entire package approach, does not resolve the information crisis. In particular, we show that the total information stored in a viable protocell (Ld) tends to a constant value that depends only on the spontaneous error rate per nucleotide of the template replication mechanism. As a result, an increase of d must be followed by a decrease of L, so that the net information gain is null. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This study aimed at investigating the structural properties and mechanisms of the antifungal action of CpOsm, a purified osmotin from Calotropis procera latex. Fluorescence and CD assays revealed that the CpOsm structure is highly stable, regardless of pH levels. Accordingly, CpOsm inhibited the spore germination of Fusarium solani in all pH ranges tested. The content of the secondary structure of CpOsm was estimated as follows: alpha-helix (20%), beta-sheet (33%), turned (19%) and unordered (28%). RMSD 1%. CpOsm was stable at up to 75 degrees C, and thermal denaturation (T(m)) was calculated to be 77.8 degrees C. This osmotin interacted with the negatively charged large unilamellar vesicles (LUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-1-glycerol (POPG), inducing vesicle permeabilization by the leakage of calcein. CpOsm induced the membrane permeabilization of spores and hyphae from Fusarium solani, allowing for propidium iodide uptake. These results show that CpOsm is a stable protein, and its antifungal activity involves membrane permeabilization, as property reported earlier for other osmotins and thaumatin-like proteins. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The alpha-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB`s cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37 degrees C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other alpha-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml(-1)) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(center dot), and those with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(center dot) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 mu M) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Dioctadecyldimethylammonium bromide (DODA B)/dipalmitoylphosphatidylcholine (DPPC) large and cationic vesicles obtained by vortexing a lipid film in aqueous solution and above the mean phase transition temperature (T-m) are characterized by means of determination of phase behaviour, size distribution, zeta-potential analysis and colloid stability. The effect of increasing % DODAB over the 0-100% range was a nonmonotonic phase behaviour. At 50% DODAB, the mean phase transition temperature and the colloid stability were at maximum. There is an intimate relationship between stability of the bilayer structure and colloid stability. In 1, 50 and 150 mM NaCl, the colloid stability for pure DPPC or pure DODAB vesicles was very low as observed by sedimentation or flocculation, respectively. In contrast, at 50% DODAB, remarkable colloid stability was achieved in 1, 50 or 150 mM NaCl for the DODAB/DPPC composite vesicles. Vesicle size decreased but the zeta-potential remained constant with % DODAB, due to a decrease of counterion binding with vesicle size. This might be important for several biotechnological applications currently being attempted with cationic bilayer systems. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The Shwachman-Bodian-Diamond syndrome protein (SBDS) is a member of a highly conserved protein family of not well understood function, with putative orthologues found in different organisms ranging from Archaea, yeast and plants to vertebrate animals. The yeast orthologue of SBDS, Sdo1p, has been previously identified in association with the 60S ribosomal subunit and is proposed to participate in ribosomal recycling. Here we show that Sdo1p interacts with nucleolar rRNA processing factors and ribosomal proteins, indicating that it might bind the pre-60S complex and remain associated with it during processing and transport to the cytoplasm. Corroborating the protein interaction data, Sdo1p localizes to the nucleus and cytoplasm and co-immunoprecipitates precursors of 60S and 40S subunits, as well as the mature rRNAs. Sdo1p binds RNA directly, suggesting that it may associate with the ribosomal subunits also through RNA interaction. Copyright (C) 2009 John Wiley & Sons, Ltd.