139 resultados para cromatólise neuronal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug abuse is a concerning health problem in adults and has been recognized as a major problem in adolescents. induction of immediate-early genes (IEG), such as c-Fos or Egr-1, is used to identify brain areas that become activated in response to various stimuli, including addictive drugs. It is known that the environment can alter the response to drugs of abuse. Accordingly, environmental cues may trigger drug-seeking behavior when the drug is repeatedly administered in a given environment. The goal of this study was first to examine for age differences in context-dependent sensitization and then evaluate IEG expression in different brain regions. For this, groups of mice received i.p. ethanol (2.0 g/kg) or saline in the test apparatus, while other groups received the solutions in the home cage, for 15 days. One week after this treatment phase, mice were challenged with ethanol injection. Acutely, ethanol increased both locomotor activity and IEG expression in different brain regions, indistinctly, in adolescent and adult mice. However, adults exhibited a typical context-dependent behavioral sensitization following repeated ethanol treatment, while adolescent mice presented gradually smaller locomotion across treatment, when ethanol was administered in a paired regimen with environment. Conversely, ethanol-treated adolescents expressed context-independent behavioral sensitization. Overall, repeated ethanol administration desensitized IEG expression in both adolescent and adult mice, but this effect was greatest in the nucleus accumbens and prefrontal cortex of adolescents treated in the context-dependent paradigm. These results suggest developmental differences in the sensitivity to the conditioned and unconditioned locomotor effects of ethanol. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale simulations of parts of the brain using detailed neuronal models to improve our understanding of brain functions are becoming a reality with the usage of supercomputers and large clusters. However, the high acquisition and maintenance cost of these computers, including the physical space, air conditioning, and electrical power, limits the number of simulations of this kind that scientists can perform. Modern commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUs) composed of hundreds of processors that can simultaneously execute thousands of threads and thus constitute a low-cost solution for many high-performance computing applications. In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations that model each neuron. Communication among neurons located in different GPUs is coordinated by the CPU. We obtained speedups of 40 for the simulation of 200k neurons that received random external input and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer with two graphic boards with two GPUs each, when compared with a modern quad-core CPU. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors (nAChR) exert pivotal roles in synaptic transmission, neuroprotection and differentiation. Particularly, homomeric alpha 7 receptors participate in neurite outgrowth, presynaptic control of neurotransmitter release and Ca(2+) influx. However, the study of recombinant alpha 7 nAChRs in transfected cell lines is difficult due to low expression of functional receptor channels. We show that PC12 pheochromocytoma cells induced to differentiation into neurons are an adequate model for studying differential nAChR gene expression and receptor activity. Whole-cell current recording indicated that receptor responses increased during the course of differentiation. Transcription of mRNAs coding for alpha 3, alpha 5, alpha 7, beta 2 and beta 4 subunits was present during the course of differentiation, while mRNAs coding for alpha 2, alpha 4 and beta 3 subunits were not expressed in PC12 cells. alpha 7 subunit expression was highest following 1 day of induction to differentiation. Activity of alpha 7 nAChRs, however, was most elevated on day 2 as revealed by inhibition experiments in the presence of 10 nM methyllycaconitine, rapid current decay and receptor responsiveness to the alpha 7 agonist choline. Increased alpha 7 receptor activity was noted when PC12 were induced to differentiation in the presence of choline, confirming that chronic agonist treatment augments nAChR activity. In summary, PC12 cells are an adequate model to study the role and pharmacological properties of this receptor during neuronal differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurotransmitters are also involved in functions other than conventional signal transfer between nerve cells, such as development, plasticity, neurodegeneration, and neuroprotection. For example, there is a considerable amount of data indicating developmental roles for the glutamatergic, cholinergic, dopaminergic, GABA-ergic, and ATP/adenosine systems. In this review, we discuss the existing literature on these "new" functions of neurotransmitters in relation to some unconventional neurotransmitters, such as the endocannabinoids and nitric oxide. Data indicating both transcriptional and post-transcriptional modulation of endocannabinoid and nitrinergic systems after neural lesions are discussed in relation to the non-conventional roles of these neurotransmitters. Knowledge of the roles of neurotransmitters in brain functions other than information transfer is critical for a more complete understanding of the functional organization of the brain and to provide more opportunities for the development of therapeutical tools aimed at minimizing neuronal death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical and operant conditioning principles, such as the behavioral discrepancy-derived assumption that reinforcement always selects antecedent stimulus and response relations, have been studied at the neural level, mainly by observing the strengthening of neuronal responses or synaptic connections. A review of the literature on the neural basis of behavior provided extensive scientific data that indicate a synthesis between the two conditioning processes based mainly on stimulus control in learning tasks. The resulting analysis revealed the following aspects. Dopamine acts as a behavioral discrepancy signal in the midbrain pathway of positive reinforcement, leading toward the nucleus accumbens. Dopamine modulates both types of conditioning in the Aplysia mollusk and in mammals. In vivo and in vitro mollusk preparations show convergence of both types of conditioning in the same motor neuron. Frontal cortical neurons are involved in behavioral discrimination in reversal and extinction procedures, and these neurons preferentially deliver glutamate through conditioned stimulus or discriminative stimulus pathways. Discriminative neural responses can reliably precede operant movements and can also be common to stimuli that share complex symbolic relations. The present article discusses convergent and divergent points between conditioning paradigms at the neural level of analysis to advance our knowledge on reinforcement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exacerbation of the oxidative stress and of the polyol pathway which impair damage myenteric plexus are metabolic characteristics of diabetes. The ascorbic acid (AA) is an antioxidant and an aldose reductase inhibitor, which may act as neuroprotector. The effects of AA supplementation on the density and cellular body profile area (CP) of myenteric neurons in STZ-induced diabetes in rats were assessed. Four groups with five animals each were formed: normoglycemic (C); diabetic (D); AA-treated diabetic (DS) and AA-treated normoglycemic (CS). Dosagen of 50mg of AA were given, three times a week, for each animal (group DS and CS). Ninety days later and after euthanasia, the ileum was collected and processed for the NADPH-diaphorase technique. There were no differences (P>0.05) in the neuronal density among the groups. The CP area was lower (P<0.05) in the DS and CS groups, with a higher incidence of neurons with a CP area exceeding 200µm² for groups C and D. The AA had no influence on the neuronal density in the ileum but had a neuroprotective effect, preventing the increase in the CP area and allowing a higher number of neurons with a CP area with less than 200µm².

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUÇÃO: os Centros de Atenção Psicossocial Infantojuvenil (CAPSi) constituem ponta de lança das ações da Reforma Psiquiátrica Brasileira e têm por finalidade o atendimento de crianças e adolescentes com transtornos psíquicos graves. O objetivo é caracterizar o perfil dos usuários de um CAPSi, considerando sexo, idade, hipótese diagnóstica, origem do encaminhamento, inserção escolar e motivo de consulta. MÉTODO: por meio de um protocolo, foram coletados dados da totalidade de prontuários ativos de uma unidade da Grande São Paulo - cento e três - no mês de janeiro de 2008. RESULTADOS: a maioria dos usuários atendidos está na faixa etária de cinco a quinze anos (68,9 por cento) e é do sexo masculino (61,2 por cento). O grupo de transtornos de comportamento e transtornos emocionais corresponde a 21,4 por cento, seguido pelos transtornos do desenvolvimento global (16,2 por cento) e retardo mental (10,5 por cento). A maioria dos usuários foi encaminhada pelo Conselho Tutelar (22,3 por cento) e tiveram como principal motivo da consulta queixas neuromotoras (17,5 por cento), escolares (15,5 por cento) e sociocomportamentais (14,6 por cento). CONCLUSÕES: o número elevado de crianças com problemas neuromotores pode indicar características específicas da instituição estudada que absorveu pacientes e profissionais de um antigo serviço de reabilitação. O grande número de questões relevantes não encontradas apontam para a falta de padronização dos prontuários

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Expectation is a very potent pain modulator in both humans and animals. There is evidence that pain transmission neurons are modulated by expectation preceding painful stimuli. Nonetheless, few studies have examined the influence of pain expectation on the pain-related neuronal activity and the functional connectivity within the central nociceptive network. Results: This study used a tone-laser conditioning paradigm to establish the pain expectation in rats, and simultaneously recorded the anterior cingulate cortex (ACC), the medial dorsal thalamus (MD), and the primary somatosensory cortex (SI) to investigate the effect of pain expectation on laser-induced neuronal responses. Cross-correlation and partial directed coherence analysis were used to determine the functional interactions within and between the recorded areas during nociceptive transmission. The results showed that under anticipation condition, the neuronal activity to the auditory cue was significantly increased in the ACC area, whereas those to actual noxious stimuli were enhanced in all the recorded areas. Furthermore, neuronal correlations within and between these areas were significantly increased under conditions of expectation compared to those under non-expectation conditions, indicating an enhanced synchronization of neural activity within the pain network. In addition, information flow from the medial (ACC and MD) to the lateral (SI cortex) pain pathway increased, suggesting that the emotion-related neural circuits may modulate the neuronal activity in the somatosensory pathway during nociceptive transmission. Conclusion: These results demonstrate that the nociceptive processing in both medial and lateral pain systems is modulated by the expectation of pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: Adults with major depressive disorder (MDD) are reported to have reduced orbitofrontal cortex (OFC) volumes, which could be related to decreased neuronal density. We conducted a study on medication naive children with MDD to determine whether abnormalities of OFC are present early in the illness course. Methods: Twenty seven medication naive pediatric Diagnostic and Statistical Manual of Mental Disorders, 4(th) edition (DSM-IV) MDD patients (mean age +/- SD = 14.4 +/- 2.2 years; 10 males) and 26 healthy controls (mean age +/- SD = 14.4 +/- 2.4 years; 12 males) underwent a 1.5T magnetic resonance imaging (MRI) with 3D spoiled gradient recalled acquisition. The OFC volumes were compared using analysis of covariance with age, gender, and total brain volume as covariates. Results: There was no significant difference in either total OFC volume or total gray matter OFC volume between MDD patients and healthy controls. Exploratory analysis revealed that patients had unexpectedly larger total right lateral (F = 4.2, df = 1, 48, p = 0.05) and right lateral gray matter (F = 4.6, df = 1, 48, p = 0.04) OFC volumes compared to healthy controls, but this finding was not significant following statistical correction for multiple comparisons. No other OFC subregions showed a significant difference. Conclusions: The lack of OFC volume abnormalities in pediatric MDD patients suggests the abnormalities previously reported for adults may develop later in life as a result of neural cell loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The Lateral Septal Area (LSA) is involved with autonomic and behavior responses associated to stress. In rats, acute restraint (RS) is an unavoidable stress situation that causes autonomic (body temperature, mean arterial pressure (MAP) and heart rate (HR) increases) and behavioral (increased anxiety-like behavior) changes in rats. The LSA is one of several brain regions that have been involved in stress responses. The aim of the present study was to investigate if the neurotransmission blockade in the LSA would interfere in the autonomic and behavioral changes induced by RS. Methodology/Principal Findings: Male Wistar rats with bilateral cannulae aimed at the LSA, an intra-abdominal datalogger (for recording internal body temperature), and an implanted catheter into the femoral artery (for recording and cardiovascular parameters) were used. They received bilateral microinjections of the non-selective synapse blocker cobalt chloride (CoCl(2), 1 mM/ 100 nL) or vehicle 10 min before RS session. The tail temperature was measured by an infrared thermal imager during the session. Twenty-four h after the RS session the rats were tested in the elevated plus maze (EPM). Conclusions/Significance: Inhibition of LSA neurotransmission reduced the MAP and HR increases observed during RS. However, no changes were observed in the decrease in skin temperature and increase in internal body temperature observed during this period. Also, LSA inhibition did not change the anxiogenic effect induced by RS observed 24 h later in the EPM. The present results suggest that LSA neurotransmission is involved in the cardiovascular but not the temperature and behavioral changes induced by restraint stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Cerebral ischemia is an important cause of brain lesion in humans. The target in research has been the ischemic core or the penumbra zones; little attention has been given to areas outside the core or the penumbra but connected with the primary site of injury. Objective: Evaluate the laminar response of a subpopulation of gabaergic cells, those that are parvalbumin (PV) positive and the astrocytes through the expression of the glial transporter GLT1 on the contralateral cortex to an ischemic core. Methodology: For this purpose we used the medial cerebral artery occlusion model in rats. The artery was occluded for 90 minutes and the animals were sacrificed at 24 and 72 hours post-ischemia. The brains were removed, cut in a vibratome at 50 microns and incubated with the primary antibodies against PV or GLT1. Sections were developed using the vectastain Kit. In control tissue the primary antibody was omitted. Results: When compared with control animals, treated ones show a decrease in the expression of GLT1, especially in layers III and IV of the contralateral cortex to the ischemic core. PV positive cells increases in layers II and V. Conclusion: Increases in the expression of PV cells could correspond to an adaptation associated with glutamate increases in the synaptic compartment. These increases may be due to decreases in the expression of GLT1 transporter, that could not remove the glutamate present in the synaptic cleft, generating hyperactivity in the contralateral cortex. These changes could represent an example of neuronal and glial plasticity in remote areas to an ischemic core but connected to the primary site of injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: To investigate the effects of malnutrition and refeeding on the P2X(2) receptor, nitric oxide synthase (NOS), calretinin, calbindin and choline acetyltransferase (ChAT) in neurons of the rat ileum. METHODS: We analyzed the co-localization, numbers and sizes of P2X(2)-expressing neurons in relation to NOS-IR (immunoreactive), calbindin-IR, ChAT-IR, and calretinin-IR neurons of the myenteric and submucosal plexus. The experimental groups consisted of: (1) rats maintained on normal feed throughout pregnancy until 42 d post-parturition (N); (2) rats deprived of protein throughout pregnancy and 42 d post-parturition (D); and (3) rats undernourished for 21 d post-parturition and then given a protein diet from days 22 to 42 (DR). The myenteric and submucosal plexuses were evaluated by double labeling by immunohistochemical methods for P2X(2) receptor, NOS, ChAT, calbindin and calretinin. RESULTS: We found similar P2X(2) receptor immunoreactivity in the cytoplasm and surface membranes of myenteric and submucosal neurons from the N, D and DR groups. Double labeling of the myenteric plexus demonstrated that approximately 100% of NOS-IR, calbindin-IR, calretinin-IR and ChAT-IR neurons in all groups also expressed the P2X(2) receptor. In the submucosal plexus, the calretinin-IR, ChAT-IR and calbindinIR neurons were nearly all immunoreactive for the P2X(2) receptor. In the myenteric plexus, there was a 19% increase in numbers per cm(2) for P2X(2) receptor-IR neurons, 64% for NOS-IR, 84% for calretinin-IR and 26% for ChAT-IR neurons in the D group. The spatial density of calbindin-IR neurons, however, did not differ among the three groups. The submucosal neuronal density increased for calbindin-IR, calretinin-IR and ChAT-IR neurons. The average size of neurons in the myenteric plexus neurons in the D group was less than that in the controls and, in the re-fed rats; there was a 34% reduction in size only for the calretinin-IR neurons. CONCLUSION: This work demonstrates that expression of the P2X(2) receptor is present in inhibitory, intrinsic primary afferent, cholinergic secretomotor and vasomotor neurons. Undernutrition affected P2X(2) receptor expression in the submucosal plexus, and neuronal and size. These changes were rescued in the re-fed rats. (C) 2010 Baishideng. All rights reserved.