138 resultados para crittografia quantistica BB84 quantum bit sicurezza incondizionata quantum key distribution
Resumo:
The results on the measurement of electrical conductivity and magnetoconductivity of a GaAs double quantum well between 0.5 and 1.1 K are reported. The zero magnetic-field conductivity is well described from the point of view of contributions made by both the weak localization and electron-electron interaction. At low field and low temperature, the magnetoconductivity is dominated by the weak localization effect only. Using the weak localization method, we have determined the electron dephasing times tau(phi) and tunneling times tau(t). Concerning tunneling, we concluded that tau(t) presents a minimum around the balance point; concerning dephasing, we observed an anomalous dependence on temperature and conductivity (or elastic mean free path) of tau(phi). This anomalous behavior cannot be explained in terms of the prevailing concepts for the electron-electron interaction in high-mobility two-dimensional electron systems.
Resumo:
We observe oscillatory magnetoresistance in double quantum wells under microwave irradiation. The results are explained in terms of the influence of subband coupling on the frequency dependent photoinduced part of the electron distribution function. As a consequence, the magnetoresistance demonstrates the interference of magnetointersubband oscillations and conventional microwave induced resistance oscillations.
Resumo:
We studied the effect of quantum confinement in Mn-doped InAs nanocrystals using theoretical methods. We observe that the stability of the impurities decreases with the size of the nanocrystals, making doping more difficult in small nanoparticles. Substitutional impurities are always more stable than interstitial ones, independent of the size of the nanocrystal. There is also a decrease in the energy difference between the high and low spin configurations, indicating that the critical temperature should decrease with the size of the nanoparticles, in agreement with experimental observations and in detriment to the development of functional spintronic devices with doped nanocrystals. Codoping with acceptors or saturating the nanocrystals with molecules that insert partially empty levels in the energy gap should be an efficient way to increase T(C).
Resumo:
We present the experimental and theoretical studies of the magnetoresistance oscillations induced by the resonance transitions of electrons between the tunnel-coupled states in double quantum wells. The suppression of these oscillations with increasing temperature is irrelevant to the thermal broadening of the Fermi distribution and reflects the temperature dependence of the quantum lifetime of electrons. The gate control of the period and amplitude of the oscillations is demonstrated.
Resumo:
The electron spin precession about an external magnetic field was studied by Faraday rotation on an inhomogeneous ensemble of singly charged, self-assembled (In,Ga)As/GaAs quantum dots. From the data the dependence of electron g-factor on optical transition energy was derived. A comparison with literature reports shows that the electron g-factors are quite similar for quantum dots with very different geometrical parameters, and their change with transition energy is almost identical. (C) 2011 American Institute of Physics. [doi:10.1063/1.3588413]
Resumo:
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.
Resumo:
Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET(2), one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.
Resumo:
We solve the operator ordering problem for the quantum continuous integrable su(1,1) Landau-Lifshitz model, and give a prescription to obtain the quantum trace identities, and the spectrum for the higher-order local charges. We also show that this method, based on operator regularization and renormalization, which guarantees quantum integrability, as well as the construction of self-adjoint extensions, can be used as an alternative to the discretization procedure, and unlike the latter, is based only on integrable representations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3509374]
Resumo:
We investigate the quantum integrability of the Landau-Lifshitz (LL) model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin [Lett. Math. Phys. 15, 357 (1988)] and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.
Resumo:
The dynamical breaking of gauge symmetry in the supersymmetric quantum electrodynamics in three-dimensional spacetime is studied at two-loop approximation. At this level, the effective superpotential is evaluated in a supersymmetric phase. At one-loop order, we observe a generation of the Chern-Simons term due to a parity violating term present in the classical action. At two-loop order, the scalar background superfield acquires a nonvanishing vacuum expectation value, generating a mass term A(alpha)A(alpha) through the Coleman-Weinberg mechanism. It is observed that the mass of gauge superfield is predominantly an effect of the topological Chern-Simons term.
Resumo:
It is by now well known that the Poincare group acts on the Moyal plane with a twisted coproduct. Poincare invariant classical field theories can be formulated for this twisted coproduct. In this paper we systematically study such a twisted Poincare action in quantum theories on the Moyal plane. We develop quantum field theories invariant under the twisted action from the representations of the Poincare group, ensuring also the invariance of the S-matrix under the twisted action of the group. A significant new contribution here is the construction of the Poincare generators using quantum fields.
Resumo:
We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent quantum system coupled to a classical environment. We compare such a formalism with the master equation approach where the environments are treated quantum mechanically. Focusing on a time-dependent spin-1/2 system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch equations and, as a consequence, to the same characteristic times T(1) and T(2) (associated with the longitudinal and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to circumvent the decoherence processes due to the loss of energy (and thus, associated with T(1)). To this end, we simply associate the time dependence of the quantum system to an easily achieved modulated frequency. A possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.
Resumo:
Finite-size scaling analysis turns out to be a powerful tool to calculate the phase diagram as well as the critical properties of two-dimensional classical statistical mechanics models and quantum Hamiltonians in one dimension. The most used method to locate quantum critical points is the so-called crossing method, where the estimates are obtained by comparing the mass gaps of two distinct lattice sizes. The success of this method is due to its simplicity and the ability to provide accurate results even considering relatively small lattice sizes. In this paper, we introduce an estimator that locates quantum critical points by exploring the known distinct behavior of the entanglement entropy in critical and noncritical systems. As a benchmark test, we use this new estimator to locate the critical point of the quantum Ising chain and the critical line of the spin-1 Blume-Capel quantum chain. The tricritical point of this last model is also obtained. Comparison with the standard crossing method is also presented. The method we propose is simple to implement in practice, particularly in density matrix renormalization group calculations, and provides us, like the crossing method, amazingly accurate results for quite small lattice sizes. Our applications show that the proposed method has several advantages, as compared with the standard crossing method, and we believe it will become popular in future numerical studies.
Resumo:
We report a study of dynamic effects detected in the time-resolved emission from quantum dot ensembles. Experimental procedures were developed to search for common behaviors found in quantum dot systems independently of their composition: three quantum dot samples were experimentally characterized. Systems with contrasting interdot coupling are compared and their sensitivity to the excitation energy is analyzed. Our experimental results are compared and contrasted with other results available in literature. The optical recombination time dependence on system parameters is derived and compared to the experimental findings. We discuss the effects of occupation of the ground state in both valence and conduction bands of semiconductor quantum dots in the dynamics of the system relaxation as well as the nonlinear effects.
Resumo:
In integrable one-dimensional quantum systems an infinite set of local conserved quantities exists which can prevent a current from decaying completely. For cases like the spin current in the XXZ model at zero magnetic field or the charge current in the attractive Hubbard model at half filling, however, the current operator does not have overlap with any of the local conserved quantities. We show that in these situations transport at finite temperatures is dominated by a diffusive contribution with the Drude weight being either small or even zero. For the XXZ model we discuss in detail the relation between our results, the phenomenological theory of spin diffusion, and measurements of the spin-lattice relaxation rate in spin chain compounds. Furthermore, we study the Haldane-Shastry model where a conserved spin current exists.