32 resultados para cool-store
Resumo:
Sex-associated differences in hypertension have been observed repeatedly in epidemiological studies; however, the mechanisms conferring vascular protection to females are not totally elucidated. Sex-related differences in intracellular Ca(2+) handling or, more specifically, in mechanisms that regulate Ca(2+) entry into vascular smooth muscle cells have been identified as players in sex-related differences in hypertension-associated vascular dysfunction. Recently, new signalling components that regulate Ca(2+) influx, in conditions of intracellular store depletion, were identified: STIM1 (stromal interaction molecule 1), which works as an intracellular Ca(2+) sensor; and Orai1, which is a component of the CRAC (Ca(2+) release-activated Ca(2+)) channels. Together, these proteins reconstitute store-operated Ca(2+) channel function. Disturbances in STIM1/Orai1 signalling have been implicated in pathophysiological conditions, including hypertension. In the present article, we analyse evidence for sex-related differences in Ca(2+) handling and propose a new hypothesis where sex-related differences in STIM/Orai signalling may contribute to hypertension-associated vascular differences between male and female subjects.
Resumo:
Background Reports of iatrogenic thermal injuries during laparoscopic surgery using new generation vessel-sealing devices, as well as anecdotal reports of hand burn injuries during hand-assisted surgeries, have evoked questions about the temperature safety profile and the cooling properties of these instruments. Methods This study involved video recording of temperatures generated by different instruments (Harmonic ACE [ACE], Ligasure V [LV], and plasma trisector [PT]) applied according the manufacturers` pre-set settings (ACE setting 3; LV 3 bars, and the PT TR2 50W). The video camera used was the infrared Flex Cam Pro directed to three different types of swine tissue: (1) peritoneum (P), (2) mesenteric vessels (MV), and (3) liver (L). Activation and cooling temperature and time were measured for each instrument. Results The ACE device produced the highest temperatures (195.9 degrees +/- 14.5 degrees C) when applied against the peritoneum, and they were significantly higher than the other instruments (LV = 96.4 degrees +/- 4.1 degrees C, and PT = 87 degrees +/- 2.2 degrees C). The LV and PT consistently yielded temperatures that were < 100 degrees C independent of type of tissue or ""on""/ ""off"" mode. Conversely, the ACE reached temperatures higher than 200 degrees C, with a surprising surge after the instrument was deactivated. Moreover, temperatures were lower when the ACE was applied against thicker tissue (liver). The LV and PT cooling times were virtually equivalent, but the ACE required almost twice as long to cool. Conclusions The ACE increased the peak temperature after deactivation when applied against thick tissue (liver), and the other instruments inconsistently increased peak temperatures after they were turned off, requiring few seconds to cool down. Moreover, the ACE generated very high temperatures (234.5 degrees C) that could harm adjacent tissue or the surgeon`s hand on contact immediately after deactivation. With judicious use, burn injury from these instruments can be prevented during laparoscopic procedures. Because of the high temperatures generated by the ACE device, particular care should be taken when it is used during laparoscopy.