148 resultados para compressive stress
Resumo:
To investigate stress intensity and coping style in older people with mild Alzheimer`s disease. The potential risk assessment of a stress event and the devising of coping strategies are dependent on cognitive function. Although older individuals with Alzheimer`s disease present significant cognitive impairment, little is known about how these individuals experience stress events and select coping strategies in stress situations. Survey. A convenient sample of 30 cognitively healthy older people and 30 individuals with mild Alzheimer`s disease were given an assessment battery of stress indicators (Symptom Stress List, Cornell Scale for Depression in Dementia, State-Trait Anxiety Inventory), coping style (Jalowiec Coping Scale) and cognitive performance (mini-mental state exam) were applied in both groups. Statistical analysis of the data employed the Mann-Whitney test to compare medians of stress indicators and coping style, Fischer`s exact test to compare proportions when expected frequencies were lower than five, and Spearman`s correlation coefficient to verify correlation between coping style and cognitive performance. Both groups suffered from the same stress intensity (p = 0.254). Regarding coping styles, although differences were not statistically significant (p = 0.124), emotion-oriented coping was predominant in the patients with Alzheimer`s disease. However, those individuals displaying better cognitive performance in the Alzheimer`s disease group had selected coping strategies focused on problem solving (p = 0.0074). Despite a tendency for older people with Alzheimer`s disease to select escape strategies and emotional control, rather than attempting to resolve or lesser the consequences arising from a problem, coping ultimately depends on cognitive performance of the individual. The findings of this study provide information and data to assist planning of appropriate support care for individuals with Alzheimer`s disease who experience stress situations, based on their cognitive performance.
Resumo:
Background/Aims: To investigate the association between cortisol levels, chronic stress and coping in subjects with amnestic-type mild cognitive impairment (aMCI). Methods: Cortisol levels were measured using morning saliva samples from 33 individuals with aMCI and from 41 healthy elderly. Chronic stress was evaluated with the Stress Symptoms List (SSL), whereas coping strategies were assessed using the Jalowiec Coping Scale. Results: aMCI subjects with high SSL scores presented higher cortisol levels (p = 0.045). Furthermore, aMCI subjects who employed emotion-focused coping had higher SSL scores (p = 0.023). Conclusion: The association between increased cortisol secretion, chronic stress and coping strategies may be modulated by the presence or absence of cognitive impairment, where memory deficit awareness constitutes an additional potential factor involved in high stress severity. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long-term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p<0.05). Furthermore, muscle tumor necrosis factor (TNF-alpha) protein expression (soleus muscle) was reduced by 24% (p<0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The aim of the study was to evaluate the possible relationships between stress tolerance, training load, banal infections and salivary parameters during 4 weeks of regular training in fifteen basketball players. The Daily Analysis of Life Demands for Athletes` questionnaire (sources and symptoms of stress) and the Wisconsin Upper Respiratory Symptom Survey were used on a weekly basis. Salivary cortisol and salivary immunoglobulin A (SIgA) were collected at the beginning (before) and after the study, and measured by enzyme-linked immunosorbent assay (ELISA). Ratings of perceived exertion (training load) were also obtained. The results from ANOVA with repeated measures showed greater training loads, number of upper respiratory tract infection episodes and negative sensation to both symptoms and sources of stress, at week 2 (p < 0.05). Significant increases in cortisol levels and decreases in SIgA secretion rate were noted (before to after). Negative sensations to symptoms of stress at week 4 were inversely and significantly correlated with SIgA secretion rate. A positive and significant relationship between sources and symptoms of stress at week 4 and cortisol levels were verified. In summary, an approach incorporating in conjunction psychometric tools and salivary biomarkers could be an efficient means of monitoring reaction to stress in sport. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-kappa B activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, I kappa B and NF-kappa B) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2 alpha phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.
Resumo:
The purpose of this study was to evaluate oxidative stress, antioxidant biomarkers, and performance during a multiday 210-km endurance race. Nine endurance athlete horses participated in this study. Samples were always taken at the same times of day, before the beginning of the race and after every day of competition. Analytic measurements included glutathione reductase (GR) and catalase activity, thiobarbituric acid-reactive substances (TBARs), and reactive carbonylated derivatives. Competition intensity was low, with an average speed of 12.56 +/- 0.9 km/h. Four horses were unable to finish the race because of metabolic problems or fatigue. GR activity increased progressively (P < .001) throughout the competition, and TBARs showed a significant rise compared with baseline values (P < .01) but remained at the same levels throughout the 3 days of competition. Catalase and reactive carbonylated derivatives did not show any significant alterations in any time period. The best performance was obtained from horses who demonstrated higher GR capacity and/or lower TBAR concentration. In conclusion, redox. status seems to modulate horses` performance in endurance races, but further Studies are needed to better determine the adequate oxidant/antioxidant ratio to acquire optimal performance.
Resumo:
The objective of this paper is to provide and verify simplified models that predict the longitudinal stresses that develop in C-section purlins in uplift. The paper begins with the simple case of flexural stress: where the force has to be applied at the shear center, or the section braced in both flanges. Restrictions on load application point and restraint of the flanges are removed until arriving at the more complex problem of bending when movement of the tension flange alone is restricted, as commonly found in purlin-sheeting systems. Winter`s model for predicting the longitudinal stresses developed due to direct torsion is reviewed, verified, and then extended to cover the case of a bending member with tension flange restraint. The developed longitudinal stresses from flexure and restrained torsion are used to assess the elastic stability behavior of typical purlin-sheeting systems. Finally, strength predictions of typical C-section purlins are provided for existing AISI methods and a newly proposed extension to the direct strength method that employs the predicted longitudinal stress distributions within the strength prediction. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a comparative analysis about the behaviour of pile caps supported by 3 piles subjected to axial loading. Piles with 20 cm and 30 cm diameters were analysed. The main reinforcement was maintained in all the specimens, however, the arrangement of the secondary reinforcement varied. The main reinforcement consisted of steel bars connecting the piles. The secondary reinforcement was made up of: (a) bars going through the piles and through the projection of the column, (b) bars forming a network, and (c) vertical and horizontal stirrups. The main objective was the observation of the pile cap behaviour regarding the cracks and the modes of rupture. The real scale specimens were subjected to experimental tests until failure by rupture. Instruments were placed with the aim to obtain the displacement of the bases, the strains in the main and secondary reinforcement bars, in the compression struts, in the lower and upper nodal zones and in the sides of the caps. None of the caps reached failure by rupture with a load less than 1.12 times the theoretical load. The specimens ruptured due to the cracking of the compression strut and/or the yielding of the reinforcement bars in one direction.
Resumo:
The central issue for pillar design in underground coal mining is the in situ uniaxial compressive strength (sigma (cm)). The paper proposes a new method for estimating in situ uniaxial compressive strength in coal seams based on laboratory strength and P wave propagation velocity. It describes the collection of samples in the Bonito coal seam, Fontanella Mine, southern Brazil, the techniques used for the structural mapping of the coal seam and determination of seismic wave propagation velocity as well as the laboratory procedures used to determine the strength and ultrasonic wave velocity. The results obtained using the new methodology are compared with those from seven other techniques for estimating in situ rock mass uniaxial compressive strength.
Resumo:
The oxidative stress biomarkers of exposure, such as reduced glutathione (GSH), activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the levels of lipid peroxidation (LPO), were measured in the blood of three cichlid fish (Oreochromis niloticus, Tilapia rendalli, and Geophagus brasiliensis) taken during two seasons from two sites, unpolluted and polluted by industrial effluents, to evaluate the effectiveness of these biomarkers in assessing the impact of water contamination. The LPO levels in the blood were higher in fish from the metal-contaminated site and the chronic exposure led to significant changes in GPx, CAT, and SOD activities in all three cichlid species. The considerable variation of responses in these cichlids to water contamination evidenced differences in sensitivity to the metal contamination and/or in the potential to respond to it highlighting the importance of using a set of related biomarkers to assess the impact of water contamination. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The fatigue crack growth properties of friction stir welded joints of 2024-T3 aluminium alloy have been studied under constant load amplitude (increasing-Delta K), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka`s method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold Delta K values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to K-C instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non-conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non-conservative crack growth rate predictions next to K-C instability. At threshold Delta K values non-conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.
Resumo:
The paper presents and discusses experimental procedures, visual observations and test results considered important to obtain data that can be used in validation of constitutive relations and failure criteria. The aim is to investigate the combined effects of stress intensity, stress-triaxiality and Lode parameter on the material response and failure behavior of aluminum alloys. Smooth and pre-notched tensile and shear specimens were manufactured from both very thin sheets and thicker plates to cover a wide range of stress triaxialities and Lode parameters. In addition, modified Arcan specimens were designed allowing investigation of the effect of sudden changes in stress states and deformation modes on the material behavior. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The paper discusses the effect of stress triaxiality on the onset and evolution of damage in ductile metals. A series of tests including shear tests and experiments oil smooth and pre-notched tension specimens wits carried Out for it wide range of stress triaxialities. The underlying continuum damage model is based oil kinematic definition of damage tensors. The modular structure of the approach is accomplished by the decomposition of strain rates into elastic, plastic and damage parts. Free energy functions with respect to fictitious undamaged configurations as well as damaged ones are introduced separately leading to elastic material laws which are affected by increasing damage. In addition, a macroscopic yield condition and a flow rule are used to adequately describe the plastic behavior. Numerical simulations of the experiments are performed and good correlation of tests and numerical results is achieved. Based oil experimental and numerical data the damage criterion formulated in stress space is quantified. Different branches of this function are taken into account corresponding to different damage modes depending oil stress triaxiality and Lode parameter. In addition, identification of material parameters is discussed ill detail. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
To explain the magnetic behavior of plastic deformation of thin magnetic films (Fe and permalloy) on an elastic substrate (nitinol), it is noted that unlike in the bulk, the dislocation density does not increase dramatically because of the dimensional constraint. As a result, the resulting residual stress, even though strain hardening is limited, dominates the observed magnetic behavior. Thus, with the field parallel to the stress axis, the compressive residual stress resulting from plastic deformation causes a decrease in remanence and an increase in coercivity; and with the field perpendicular to the stress axis, the resulting compressive residual stress causes an increase in remanence and a decrease in coercivity. These elements have been inserted into the model previously developed for plastic deformation in the bulk, producing the aforementioned behavior, which has been observed experimentally in the films.
Resumo:
In this work, the stress relaxation behavior of PMMA/PS blends, with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition (ranging from 10 to 30 wt.% of dispersed phase), viscosity ratio (ranging from 0.1 to 7.5), and random copolymer addition (for concentrations up to 8 wt.% with respect to the dispersed phase) was evaluated and correlated to the evolution of the morphology of the blends. All blends presented three relaxation stages: a first fast relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of a plateau, and a third fast one. The relaxation was shown to be faster for less extended and smaller droplets and to be influenced by coalescence for blends with a dispersed phase concentration larger than 20 wt.%. The relaxation of the blend was strongly influenced by the matrix viscosity. The addition of random copolymer resulted in a slower relaxation of the droplets.