95 resultados para cardiac mapping-three-dimensional systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new two-dimensionally mapped infinite boundary element (IBE) is presented. The formulation is based on a triangular boundary element (BE) with linear shape functions instead of the quadrilateral IBEs usually found in the literature. The infinite solids analyzed are assumed to be three-dimensional, linear-elastic and isotropic, and Kelvin fundamental solutions are employed. One advantage of the proposed formulation over quadratic or higher order elements is that no additional degrees of freedom are added to the original BE mesh by the presence of the IBEs. Thus, the IBEs allow the mesh to be reduced without compromising the accuracy of the result. Two examples are presented, in which the numerical results show good agreement with authors using quadrilateral IBEs and analytical solutions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work is to present an alternative boundary element method (BEM) formulation for the static analysis of three-dimensional non-homogeneous isotropic solids. These problems can be solved using the classical boundary element formulation, analyzing each subregion separately and then joining them together by introducing equilibrium and displacements compatibility. Establishing relations between the displacement fundamental solutions of the different domains, the alternative technique proposed in this paper allows analyzing all the domains as one unique solid, not requiring equilibrium or compatibility equations. This formulation also leads to a smaller system of equations when compared to the usual subregion technique, and the results obtained are even more accurate. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional discretizations used in numerical analyses of tunnel construction normally include excavation step lengths much shorter than tunnel cross-section dimensions. Simulations have usually worked around this problem by using excavation steps that are much larger than the actual physical steps used in a real tunnel excavation. In contrast, the analyses performed in this study were based on finely discretized meshes capable of reproducing the excavation lengths actually used in tunnels, and the results obtained for internal forces are up to 100% greater than those found in other analyses available in the literature. Whereas most reports conclude that internal forces depend on support delay length alone, this study shows that geometric path dependency (reflected by excavation round length) is very strong, even considering linear elasticity. Moreover, many other solutions found in the literature have also neglected the importance of the relative stiffness between the ground mass and support structure, probably owing to the relatively coarse meshes used in these studies. The analyses presented here show that relative stiffness may account for internal force discrepancies in the order of 60%. A dimensionless expression that takes all these parameters into account is presented as a good approximation for the load transfer mechanism at the tunnel face.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to develop an improved model of the human thermal system. The features included are important to solve real problems: 3D heat conduction, the use of elliptical cylinders to adequately approximate body geometry, the careful representation of tissues and important organs, and the flexibility of the computational implementation. Focus is on the passive system, which is composed by 15 cylindrical elements and it includes heat transfer between large arteries and veins. The results of thermal neutrality and transient simulations are in excellent agreement with experimental data, indicating that the model represents adequately the behavior of the human thermal system. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A brief look at the history of fractography has shown a recent trend in the quantification of topographic parameters through the use of three-dimensional reconstruction techniques, which associate SEM stereoscopy and stereophotogrammetry software, allowing the calculation of the elevation measurement at numerous points of the topography due to the parallax that takes place during the tilting of the sample along the microscope eucentric plane. Several investigators have used reconstruction techniques to correlate some fractographic parameters, such as fractal dimension and fractured to projected area ratio, to the mechanical properties of materials, such as fracture toughness and tensile strength. So far, the search for a clear relationship between the fracture topography and mechanical properties has provided ambiguous results. The present work applied a surface metrology software to reconstruct three-dimensionally fracture surfaces (transgranular cleavage, intergranular and dimple fracture), corrosion pits and tribo-surfaces in order to explore the potential of this stereophotogrammetry technique. The existence of a variation in the calculated topographic parameters with the conditions of SEM image acquisition reinforces the importance of both good image acquisition and accurate calibration methods in order to validate this 3D reconstruction technique in metrological terms. Preliminary results did not indicate the existence of a clear relationship between either the true to project area ratio and CVN absorbed energy or the fractal dimension and CVN absorbed energy. It is likely that each fracture mechanism presents a proper relationship between the fractographic parameters and mechanical properties. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The presence of the periodontal ligament (PDL) makes it possible to absorb and distribute loads produced during masticatory function and other tooth contacts into the alveolar process via the alveolar bone proper. However, several factors affect the integrity of periodontal structures causing the destruction of the connective matrix and cells, the loss of fibrous attachment, and the resorption of alveolar bone. Methods: The purpose of this study was to evaluate the stress distribution by finite element analysis in a PDL in three-dimensional models of the upper central incisor under three different load conditions: 100 N occlusal loading at 45 degrees (model 1: masticatory load); 500 N at the incisal edge at 45 degrees (model 2: parafunctional habit); and 800 N at the buccal surface at 90 degrees (model 3: trauma case). The models were built from computed tomography scans. Results: The stress distribution was quite different among the models. The most significant values (harmful) of tensile and compressive stresses were observed in models 2 and 3, with similarly distinct patterns of stress distributions along the PDL. Tensile stresses were observed along the internal and external aspects of the PDL, mostly at the cervical and middle thirds. Conclusions: The stress generation in these models may affect the integrity of periodontal structures. A better understanding of the biomechanical behavior of the PDL under physiologic and traumatic loading conditions might enhance the understanding of the biologic reaction of the PDL in health and disease. J Periodontol 2009;80:1859-1867.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our aim was to document the benefits of three dimensional finite element model generations from computed tomography data as well as the realistic creation of all oral structures in a patient. The stresses resulting from the applied load in our study did not exceed the structure limitations, suggesting a clinically acceptable physiological condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To describe the microsurgical anatomy, branches, and anatomic relationships of the posterior cerebral artery (PCA) represented in three-dimensional images. METHODS: Seventy hemispheres of 35 brain specimens were studied. They were previously injected with red silicone and fixed in 10% formalin for at least 40 days. Four of the studied specimens were frozen at -10 degrees to -15 degrees C for 14 days, and additional dissection was done with the Klingler`s fiber dissection technique at x6 to x40 magnification. Each segment of the artery was measured and photographed to obtain three-dimensional stereoscopic images. RESULTS: The PCA origin was in the interpeduncular cistern at the pontomesencephalic junction level in 23 specimens (65.7%). The PCA was divided into four segments: P1 extends from the PCA origin to its junction with the posterior communicating artery with an average length of 7.7 mm; P2 was divided into an anterior and posterior segment. The P2A segment begins at the posterior communicating artery and ends at the most lateral aspect of the cerebral peduncle, with an average length of 23.6 mm, and the P2P segment extends from the most lateral aspect of the cerebral peduncle to the posterior edge of the lateral surface of the midbrain, with an average length of 16.4 mm; P3 extends from the posterior edge of the lateral surface of the midbrain and ends at the origin of the parieto-occipital sulcus along the calcarine fissure, with an average length of 19.8 mm; and the P4 segment corresponds to the parts of the PCA that run along or inside both the parieto-occipital sulcus and the distal part of the calcarine fissure. CONCLUSIONS: To standardize the neurosurgical practice and knowledge, surgical anatomic classifications should be used uniformly and further modified according to the neurosurgical experience gathered. The PCA classification proposed intends to correlate its anatomic segments with their required microneurosurgical approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblasts are thought to be partially responsible for the persisting contractile forces that result in burn contractures. Using a monolayer cell culture and fibroblast populated collagen lattice (FPCL) three-dimensional model we subjected hypertrophic scar and non-cicatricial fibroblasts to the antifibrogenic agent pentoxifylline (PTF - 1 mg/mL) in order to reduce proliferation, collagen types I and III synthesis and model contraction. Fibroblasts were isolated from post-burn hypertrophic scars (HSHF) and non-scarred skin (NHF). Cells were grown in monolayers or incorporated into FPCL`s and exposed to PTF. In monolayer, cell number proliferation was reduced (46.35% in HSHF group and 37.73% in NHF group, p < 0.0001). PTF selectively inhibited collagen III synthesis in the HSHF group while inhibition was more evident to type I collagen synthesis in the NHF group. PTF also reduced contraction in both (HSHF and NHF) FPCL. (C) 2009 Elsevier Ltd and ISBI. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluate the distribution and variation of placental vascular indices according to gestational age and placental volume. From March to November 2007, three-dimensional (3D)-power Doppler ultrasound was performed in 295 normal pregnancies from 12 to 40 weeks of gestation. Using the same preestablished settings for all patients, power Doppler was applied to the placenta and placental Volume was obtained by the rotational technique (VOCAL(TM)). The 3D-power histogram was used to determine the placental vascular indices: vascularization index (VI), flow index (FI) and vascularization-flow index (VFI). The placental vascular indices were then plotted against gestational age and placental volume. All placental vascular indices showed constant distribution throughout gestation. A tendency for a reduction in placental vascular indices with increased placental volume was observed, but was only statistically significant when placental FI was considered (p < 0.05). All placental vascular indices estimated by 3D-power Doppler ultrasonography presented constant distribution throughout gestation, despite the increase in placental volume according to gestational age. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. To use 3-dimensional sonography (3DUS) to measure contralateral lung volume and evaluate the potential of this measurement to predict neonatal outcome in isolated congenital diaphragmatic hernia (CDH). Methods. Between January 2002 and December 2004, the contralateral lung volumes of 39 fetuses with isolated CDH were measured via 3DUS using rotational multiplanar imaging. The observed/expected contralateral fetal lung volume ratios (o/eContFLVR) were compared with the lung/head ratio (LHR), observed/expected total fetal lung volume ratio (o/e-TotFLVR), and postnatal outcome. Results. Contralateral lung volumes are less reduced than total lung volumes in CDH. The bias and precision of 3DUS in estimating contralateral lung volumes were 0.99 cm(3) and 1.11 cm(3), respectively, with absolute limits of agreement ranging from -1.19 cm(3) to + 3.17 cm(3). The o/e-ContFLVR was significantly lower in neonatal death cases (median, 0.49 cm(3); range, 0.22-0.99 cm(3)) than in survival cases (median, 0.58 cm(3); range, 0.42-0.92 cm(3) [p < 0.011). Overall accuracy of the o/e-ContFLVR, o/e-TotFLVR, and LHR in predicting neonatal death were 67.7% (21/31), 80.7% (25/31), and 77.4% (24/31), respectively. Conclusion. Although o/e-ContFLVR can be precisely measured with 3DUS and can be used to predict neonatal death in CDH, it is less accurate than LHR and o/e-TotFLVR for that purpose. (C) 2007 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymphangioma is a rare benign tumor characterized by proliferating lymph vessels and composed of large cyst spaces with endothelium-lined channels of varying dimensions. The incidence of lymphangioma is approximately one in 6000 pregnancies. Less than 1 % of lymphangiomas are purely mediastinal. The great majority of cases are of cystic lymphangioma, but very rarely there is a mixed lesion consisting of multiple cysts of dilated capillary and lymph vessels. We report a case of posterior mediastinal lymphangioma diagnosed at 28 weeks` gestation, in which three-dimensional ultrasonography was helpful in determining the precise location of the tumor. A Cesarean section was performed at 39 weeks and the tumor was resected on the 5(th) day postdelivery; histological examination revealed a mixed cystic lymphangioma. Copyright (C) 2008 ISUOG. Published by John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate the precision of three-dimensional ultrasonography (3DUS) in estimating the ipsilateral lung volume and the potential of this measurement to predict neonatal death in congenital diaphragmatic hernia (CDH). Methods: Between January 2002 and December 2004, the ipsilateral lung volumes were assessed by 3DUS using the technique of rotation of the multiplan imaging in 39 fetuses with CDH. The observed/ expected ipsilateral lung volume ratios (o/e-IpsiFLVR) were compared to the lung/head ratios (LHR) and to the observed/ expected total fetal lung volume ratios (o/e-TotFLVR) as well as to postnatal death. Results: Ipsilateral lung volumes (median 0.12, range 0.01-0.66) were more reduced than the total lung volumes (median 0.52, range 0.11-0.95, p < 0.001) in CDH. The bias and precision of 3DUS in estimating ipsilateral lung volumes were -0.61 and 0.99 cm 3, respectively, with absolute limits of agreement from -2.56 to +1.33 cm(3). The o/e-IpsiFLVR was lower in neonatal death cases (median 0.09, range 0.01-0.46) than in survivals (median 0.18, range 0.01-0.66), but this difference was not statistically significance (p > 0.05). The sensitivity, speci-ficity, (positive and negative) predictive values and accuracy of o/e-IpsiFLVR in predicting neonatal death was 52.6% (10/19), 83.3% (10/12), 83.3% (10/12), 52.6% (10/19) and 64.5% (20/31), respectively. Conclusion: Although the ipsilateral lung volume can be measured by 3DUS, it cannot be used to predict neonatal death when considering it alone. However, it is important to measure it to calculate the total fetal lung volumes as the o/e-TotFLVR has the best efficacy in predicting neonatal death in isolated CDH. Copyright (C) 2008 S. Karger AG, Basel