65 resultados para baroreflex
Resumo:
Regarding all benefits of exercise training, a question remains: how long are these benefits kept? This study evaluated the effect of 3-week detraining after 10 weeks of training in STZ-diabetic rats. Male Wistar rats were assigned into: sedentary controls, trained controls, trained-detrained controls. sedentary diabetic, trained diabetic and trained-detrained diabetic. Arterial pressure (AP) and heart rate (HR) were recorded by a data acquisition system. Baroreflex sensitivity (BRS) was evaluated by HR responses to AP changes induced by infusion of vasoactive drugs. Intrinsic heart rate (IHR), sympathetic tonus (ST) and vagal tonus (VT) were evaluated by pharmacological blockade with atenolol and atropine. Spectral analysis of systolic AP and HR variabilities (HRV) was performed to estimate autonomic modulation to the heart and vessels. Diabetes cardiovascular and autonomic dysfunctions were reversed by exercise training and partially maintained in the 3-week detraining period. In controls, training decreased AP and HR and improved BRS. changes that returned to baseline values after detraining. IHR and VT were improved in trained diabetic rats and remained in detrained diabetic ones. LF component of HRV decreased in trained control group. In diabetics. exercise training improved variance, and absolute LF and HF components of HRV. Only HF was maintained in detrained diabetic group. Moreover, there was an inverse relationship between plasma glucose and the absolute HF component of HRV. These changes probably determined the different survival rate of 80% in diabetic detrained and 51% in diabetic sedentary rats. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Study Objectives: Metabolic syndrome (MetSyn) increases overall cardiovascular risk. MetSyn is also strongly associated with obstructive sleep apnea (OSA), and these 2 conditions share similar comorbidities. Whether OSA increases cardiovascular risk in patients with the MetSyn has not been investigated. We examined how the presence of USA in patients with MetSyn affected hemodynamic and autonomic variables associated with poor cardiovascular outcome. Design: Prospective clinical study. Participants: We studied 36 patients with MetSyn (ATP-III) divided into 2 groups matched for age and sex: (1) MetSyn+OSA (n = 18) and (2) MetSyn-OSA (n = 18). Measurements: USA was defined by an apnea-hypopnea index (AHI) > 15 events/hour by polysomnography. We recorded muscle sympathetic nerve activity (MSNA - microneurography), heart rate (HR), and blood pressure (BP - Finapres). Baroreflex sensitivity (BRS) was analyzed by spontaneous BP and HR fluctuations. Results: MSNA (34 +/- 2 vs 28 +/- 1 bursts/min, P = 0.02) and mean BP (111 +/- 3 vs. 99 +/- 2 mm Hg, P = 0.003) were higher in patients with MetSyn+OSA versus patients with MetSyn-USA. Patients with MetSyn+OSA had lower spontaneous BRS for increases (7.6 +/- 0.6 vs 12.2 +/- 1.2 msec/mm Hg, P = 0.003) and decreases (7.2 +/- 0.6 vs 11.9 +/- 1.6 msec/mm Hg, P = 0.01) in BP. MSNA was correlated with AHI (r = 0.48; P = 0.009) and minimum nocturnal oxygen saturation (r = -0.38, P = 0.04). Conclusion: Patients with MetSyn and comorbid USA have higher BP, higher sympathetic drive, and diminished BRS, compared with patients with MetSyn without USA. These adverse cardiovascular and autonomic consequences of USA may be associated with poorer outcomes in these patients. Moreover, increased BP and sympathetic drive in patients with MetSyn+OSA may be linked, in part, to impairment of baroreflex gain.
Resumo:
Menopause is recognized as a period of increased risk for coronary heart disease. Although the benefits of exercise training in lowering cardiovascular risk factors are well established, the risks and benefits of hormone therapy have been questioned. The purpose of the present study was to investigate the effects of estrogen therapy (HT) associated or not with exercise training (ET) in autonomic cardiovascular control in ovariectomized (OVX) rats. Female rats were divided into: control, OVX, OVX+HT, OVX+ET and OVX+HT+ET. HT was performed using a 0.25 mg 8-weeks sustained release pellet. Trained groups were submitted to an 8-week exercise training protocol on treadmill. Baroreflex sensitivity (BRS) was evaluated by heart rate responses to arterial pressure (AP) changes, and vagal and sympathetic tonus by pharmacological blockade. Ovariectomy induced an AP increase (123 +/- 2 mmHg vs. 108 +/- 2 mmHg), BRS impairment (similar to 69%), sympathetic activation (similar to 100%) and vagal tonus reduction (similar to 77%) compared to controls. HT or ET normalized the changes in parasympathetic tonus. However, only the association HT + ET was able to promote normalization of AP, BRS and sympathetic tonus, as compared to controls. These results indicate that ET induces cardiovascular and autonomic benefits in OVX rats under HT, suggesting a positive role of this association in the management of cardiovascular risk factor in postmenopausal women. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objectives The present study investigates the hemodynamic and autonomic regulation during sleep-awake transitions and across different sleep cycles in patients with essential hypertension. Methods Nineteen individuals free of sleep apnea (10 normotensive and nine hypertensive matched for age, sex, and body mass index) underwent a standard polysomnography, with simultaneous electrocardiography and beat-to-beat blood pressure monitoring (Portapres). All measurements were determined while awake (before and after sleep), as well as in the beginning and at end of the sleep cycle (first/last cycle of nonrapid and rapid eye movement stages). Results Systolic blood pressure was higher in hypertensives and exhibited a similar reduction to the normotensives ones in initial nonrapid eye movement sleep. This reduction was because of different mechanisms: a significant fall in cardiac output in normotensives, whereas in hypertensives was also dependent of a decrease in peripheral vascular resistance. Hypertensive patients presented lower heart rate variation and attenuated baroreflex sensitivity during sleep but not immediately before and after sleep. Spectral analysis suggested a higher sympathetic activity in the sleep stages in hypertension. Additionally, a progressive sympathetic predominance (final rapid eye movement> initial rapid eye movement and awake period postsleep> awake period presleep) was observed in both groups. Conclusion Hypertension is associated with depressed baroreflex sensitivity and increased sympathetic activation during sleep. The greater sympathetic predominance at the end of night (preceding the morning surge of sympathetic activity) could be implicated in the occurrence of cardiovascular events. J Hypertens 27: 1655-1663 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
BACKGROUND Spontaneously hypertensive rats (SHRs) show increased cardiac sympathetic activity, which could stimulate cardiomyocyte hypertrophy, cardiac damage, and apoptosis. Norepinephrine (NE)induced cardiac oxidative stress seems to be involved in SHR cardiac hypertrophy development. Because exercise training (ET) decreases sympathetic activation and oxidative stress, it may alter cardiac hypertrophy in SHR. The aim of this study was to determine, in vivo, whether ET alters cardiac sympathetic modulation on cardiovascular system and whether a correlation exists between cardiac oxidative stress and hypertrophy. METHODS Male SHRs (15-weeks old) were divided into sedentary hypertensive (SHR, n = 7) and exercise-trained hypertensive rats (SHR-T, n = 7). Moderate ET was performed on a treadmill (5 days/week, 60 min, 10 weeks). After ET, cardiopulmonary reflex responses were assessed by bolus injections of 5-HT. Autoregressive spectral estimation was performed for systolic arterial pressure (SAP) with oscillatory components quantified as low (LF: 0.2-0.75 Hz) and high (HF:0.75-4.0 Hz) frequency ranges. Cardiac NE concentration, lipid peroxidation, antioxidant enzymes activities, and total nitrates/nitrites were determined. RESULTS ET reduced mean arterial pressure, SAP variability (SAP var), LIF of SAP, and cardiac hypertrophy and increased cardiopulmonary reflex responses. Cardiac lipid peroxidation was decreased in trained SHRs and positively correlated with NE concentrations (r= 0.89, P < 0.01) and heart weight/body weight ratio (r= 0.72, P < 0.01), and inversely correlated with total nitrates/nitrites (r= -0.79, P < 0.01). Moreover, in trained SHR, cardiac total nitrates/nitrites were inversely correlated with NE concentrations (r= -0.82, P < 0.01). CONCLUSIONS ET attenuates cardiac sympathetic modulation and cardiac hypertrophy, which were associated with reduced oxidative stress and increased nitric oxide (NO) bioavailability. Am J Hypertens 2008;21:1138-1193 (C) 2008 American Journal of Hypertension, Ltd.
Resumo:
Study Objectives: To analyze the role of arterial baroreflex on hemodynamic changes during synchronized and desynchronized sleep phases of natural sleep in rats. Design: Experimental study. Setting: Laboratory. Participants: Seventeen male Wistar rats. Interventions: No intervention (control, n = 8) or sinoaortic denervation (SAD, n = 9). Measurements and Results: Sleep phases were monitored by electrocorticogram, and blood pressure was measured directly by a catheter in the carotid artery. Cardiac output, as well as total and regional vascular resistances, were determined by measuring the subdiaphragmatic aorta and iliac artery flows with Doppler flow probes, respectively. In contrast to the control group, the SAD group had a strong reduction in blood pressure (-19.9% +/- 2.6% vs -0.7% +/- 2.1%) during desynchronized sleep, and cardiac output showed an exacerbated reduction (-10.4% +/- 3.5% vs 1.1% +/- 1.7%). In SAD rats, total vascular resistance decreased during desynchronized sleep (-10.1% +/- 3.5% vs -1.0% +/- 1.7%), and the increase in regional vascular resistance observed in the control group was abolished (27.5% +/- 8.3% vs -0.8% +/- 9.4%). Conclusions: SAD caused profound changes in blood pressure, cardiac output, and total vascular resistance, with a significant increase in muscle vascular resistance during synchronized sleep. Our results suggest that baroreflex plays an important role in maintaining the normal balance of cardiac output and total vascular resistance during sleep.
Resumo:
The present study has investigated in conscious rats the influence of the duration of physical training sessions on cardiac autonomic adaptations by using different approaches; 1) double blockade with methylatropine and propranolol; 2) the baroreflex sensitivity evaluated by alternating bolus injections of phenylephrine and sodium nitroprusside; and 3) the autonomic modulation of HRV in the frequency domain by means of spectral analysis. The animals were divided into four groups: one sedentary group and three training groups submitted to physical exercise (swimming) for 15, 30, and 60 min a day during 10 weeks. All training groups showed similar reduction in intrinsic heart rate (IHR) after double blockade with methylatropine and propranolol. However, only 30-min and 60-min physical training presented an increase in the vagal autonomic component for determination of basal heart rate (HR) in relation to group sedentary. Spectral analysis of HR showed that the 30-min and 60-min physical training presented the reduction in low-frequency oscillations (LF = 0.20-0.75 Hz) and the increase in high-frequency oscillations (HF = 0.75-2.5 Hz) in normalized units. These both groups only showed an increased baroreflex sensitivity to tachycardiac responses in relation to group sedentary, however when compared, the physical training of 30-min exhibited a greater gain. In conclusion, cardiac autonomic adaptations, characterised by the increased predominance of the vagal autonomic component, were not proportional to the duration of daily physical training sessions. In fact, 30-minute training sessions provided similar cardiac autonomic adaptations, or even more enhanced ones, as in the case of baroreflex sensitivity compared to 60-minute training sessions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We have previously reported that L-glutamate (L-glu) injected into the ventral portion of medial prefrontal cortex (vMPFC) of unanesthetized normotensive Wistar rats elicited cardiovascular responses. In the present study we investigated whether the spontaneously hypertensive rat (SHR) exhibit abnormal cardiovascular responses after L-glu microinjection in the vMPFC. Microinjections of L-glu (3, 9, 27, 81 or 150 nmol/200 nl) caused long-lasting dose-related depressor and bradycardiac responses in unanesthetized SHR (n = 6, each dose). Pressor and tachycardiac responses were evoked after the injection of 81 nmol of L-glu in the vMPFC of normotensive Wistar rats (n=6). Systemic pretreatment with the betal-adrenoceptor antagonist atenolol (1.5 mg/kg, i.v.) had no effect on L-glu cardiovascular responses evoked in the SHR (n=5). However, the treatment with the muscarinic antagonist homatropine methyl bromide (I mg/kg, i.v.) blocked the bradycardiac response to L-glu, without significant effects on depressor response evoked by L-glu in the SHR (n = 5). These results indicate that the bradycardiac response to the injection of L-glu injection in the vMPFC is due to activation of the parasympathetic system and not to inhibition of the cardiac sympathetic input. In conclusion, results indicate opposite cardiovascular responses when L-glu was microinjected in the vMPFC of unanesthetized SHR or normotensive. The bradycardiac response observed in the SHR was due to parasympathetic activation and was not affected by pharmacological blockade of the cardiac sympathetic output. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Dynamic exercise evokes sustained blood pressure and heart rate (HR) increases. Although it is well accepted that there is a CNS mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is still limited. The bed nucleus of the stria terminalis (BST) is involved in exercise-evoked cardiovascular responses in rats. However, the specific neurotransmitter involved in BST-related modulation of cardiovascular responses to dynamic exercise is still unclear. In the present study, we investigated the role of local BST adrenoceptors in the cardiovascular responses evoked when rats are submitted to an acute bout of exercise on a rodent treadmill. We observed that bilateral microinjection of the selective alpha 1-adrenoceptor antagonist WB4101 into the BST enhanced the HR increase evoked by dynamic exercise without affecting the mean arterial pressure (MAP) increase. Bilateral microinjection of the selective alpha 2-adrenoceptor antagonist RX821002 reduced exercise-evoked pressor response without changing the tachycardiac response. BST pretreatment with the nonselective beta-adrenoceptor antagonist propranolol did not affect exercise-related cardiovascular responses. BST treatment with either WB4101 or RX821002 did not affect motor performance in the open-field test, which indicates that effects of BST adrenoceptor antagonism in exercise-evoked cardiovascular responses were not due to changes in motor activity. The present findings are the first evidence showing the involvement of CNS adrenoceptors in cardiovascular responses during dynamic exercise. Our results indicate an inhibitory influence of BST alpha 1-adrenoceptor on the exercise-evoked HR response. Data also point to a facilitatory role played by the activation of BST alpha 2-adrenoceptor on the pressor response to dynamic exercise. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.
Resumo:
Introduction: Among patients with congestive heart failure (CHF) both obstructive and central sleep apnea (SA) are associated with increased sympathetic activity. However, the day-night pattern of cardiac autonomic nervous system modulation in CHF patients with and without sleep apnea is unknown. Material and methods: Twenty-five CHF patients underwent polysomnography with simultaneous beat-to-beat blood pressure (Portapres), respiration and electrocardiogram monitoring. Patients were divided according to the presence (SA, n=17) and absence of SA (NoSA, n=8). Power spectral analyses of heart rate variability (HRV) and spontaneous baroreflex sensitivity (BRS) were determined in periods with stable breathing while awake at 6 AM, 10 AM, 10 PM, as well as during stage 2 sleep. In addition, muscle sympathetic nerve activity (MSNA) was evaluated at 10 AM. Results: RR variance, low-frequency (LF), high-frequency (HF) powers of HRV, and BRS were significantly lower in patients with SA compared with NoSA in all periods. HF power, a marker of vagal activity, increased during sleep in patients with NoSA but in contrast did not change across the 24-hour period in patients with SA. MSNA was significantly higher in patients with SA compared with NoSA. RR variance, LF and HF powers correlated inversely with simultaneous MSNA (r=-0.64, -0.61, and -0.61 respectively; P < 0.01). Conclusions: Patients with CHF and SA present a reduced and blunted cardiac autonomic modulation across the 24-hour period. These findings may help to explain the increased cardiovascular risk in patients with CHF and SA. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 daysprior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low-(LF; 0.25-1Hz) and high-frequency bands (HF; 1-5Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.
Resumo:
Durand MT, Castania JA, Fazan R Jr, Salgado MC, Salgado HC. Hemodynamic responses to aortic depressor nerve stimulation in conscious L-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R418-R427, 2011. First published November 24, 2010; doi: 10.1152/ajpregu.00463.2010.-The present study investigated whether baroreflex control of autonomic function is impaired when there is a deficiency in NO production and the role of adrenergic and cholinergic mechanisms in mediating reflex responses. Electrical stimulation of the aortic depressor nerve in conscious normotensive and nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats was applied before and after administration of methylatropine, atenolol, and prazosin alone or in combination. The hypotensive response to progressive electrical stimulation (5 to 90 Hz) was greater in hypertensive (-27 +/- 2 to -64 +/- 3 mmHg) than in normotensive rats (-17 +/- 1 to -46 +/- 2 mmHg), whereas the bradycardic response was similar in both groups (-34 +/- 5 to -92 +/- 9 and -21 +/- 2 to -79 +/- 7 beats/min, respectively). Methylatropine and atenolol showed no effect in the hypotensive response in either group. Methylatropine blunted the bradycardic response in both groups, whereas atenolol attenuated only in hypertensive rats. Prazosin blunted the hypotensive response in both normotensive (43%) and hypertensive rats (53%) but did not affect the bradycardic response in either group. Prazosin plus angiotensin II, used to restore basal arterial pressure, provided hemodynamic responses similar to those of prazosin alone. The triple pharmacological blockade abolished the bradycardic response in both groups but displayed similar residual hypotensive response in hypertensive (-13 +/- 2 to -27 +/- 2 mmHg) and normotensive rats (-10 +/- 1 to -25 +/- 3 mmHg). In conclusion, electrical stimulation produced a well-preserved baroreflex-mediated decrease in arterial pressure and heart rate in conscious L-NAME-induced hypertensive rats. Moreover, withdrawal of the sympathetic drive played a role in the reflex bradycardia only in hypertensive rats. The residual fall in pressure after the triple pharmacological blockade suggests the involvement of a vasodilatory mechanism unrelated to NO or deactivation of alpha(1)-adrenergic receptor.
Resumo:
Chemoreflex afferent fibers terminate in the nucleus tractus solitarii (NTS), but the specific location of the NTS neurons excited by peripheral chemoreflex activation remains to be characterized. Here, the topographic distribution of chemoreflex sensitive cells at the commissural NTS was evaluated. To reach this goal, Fos-immunoreactive neurons (Fos-ir) were accounted in rostro-caudal levels of the intermediate and caudal commissural NTS, after intermittent chemoreflex activation with intravenous injection of potassium cyanide [KCN (80 mu g/kg) or saline (0.9%, vehicle), one injection every 3 min during 30 min]. In response to intermittent intravenous injections of KCN, a significant increase in the number of Fos-ir neurons was observed specifically in the lateral intermediate commissural NTS [(LI)NTS (82 +/- 9 vs. 174 +/- 16, cell number mean per section)] and lateral caudal commissural NTS [(LI)NTS (71 +/- 9 vs. 199 +/- 18, cell number mean per section)]. To evaluate the influence of baroreceptor-mediated inputs following the increase in blood pressure during intermittent chemoreflex activation, we performed an intermittent activation of the arterial baroreflex by intravenous injection of phenylephrine [1.5 mu g/kg iv (one injection every 3 min during 30 min)]. This procedure induced no change in Fos-ir in (LI)NTS (64 +/- 6 vs. 62 +/- 12, cell number mean per section) or (LC)NTS (56 +/- 15 vs. 77 +/- 12, cell number mean per section). These data support the involvement of the commissural NTS in the processing of peripheral chemoreflex, and provide a detailed characterization of the topographical distribution of activated neurons within this brain region. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Santos FM, Dias DPM, Silva CAA, Fazan Jr R, Salgado HC. Sympathetic activity is not increased in L-NAME hypertensive rats. Am J Physiol Regul Integr Comp Physiol 298: R89-R95, 2010. First published November 4, 2009; doi:10.1152/ajpregu.00449.2009.-The role played by the sympathetic drive in the development of N(G)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension is not firmly established. Therefore, the present study was undertaken in conscious rats in which hypertension was induced by treatment with L-NAME over the course of either 2 or 14 days. Mean arterial pressure (MAP) was measured via a catheter placed in the femoral artery, drugs were administered via a cannula placed in the femoral vein, and renal sympathetic nerve activity (RSNA) was monitored using an implanted electrode. Despite the remarkable increase in arterial pressure, heart rate did not change after treatment with L-NAME. RSNA was similar in L-NAME-induced hypertensive rats treated over the course of 2 or 14 days, as well as in normotensive rats. It was also demonstrated that L-NAME-induced hypertensive rats displayed a resetting of the baroreflex control of RSNA to hypertensive levels, with decreased sensitivity over the course of 2 or 14 days. Furthermore, the sympathetic-vagal balance examined in the time and frequency domain and the renal and plasma norepinephrine content did not differ between groups. In conclusion, the evaluation of the sympathetic drive in conscious rats demonstrated that the arterial hypertension induced by L-NAME treatment over the course of 2 and 14 days does not show sympathetic overactivity.