129 resultados para autosomal dominant inheritances
Resumo:
Auriculo-condylar syndrome (ACS), an autosomal dominant disorder of first and second pharyngeal arches, is characterized by malformed ears (`question mark ears`), prominent cheeks, microstomia, abnormal temporomandibular joint, and mandibular condyle hypoplasia. Penetrance seems to be complete, but there is high inter-and intra-familial phenotypic variation, with no evidence of genetic heterogeneity. We herein describe a new multigeneration family with 11 affected individuals (F1), in whom we confirm intra-familial clinical variability. Facial asymmetry, a clinical feature not highlighted in other ACS reports, was highly prevalent among the patients reported here. The gene responsible for ACS is still unknown and its identification will certainly contribute to the understanding of human craniofacial development. No chromosomal rearrangements have been associated with ACS, thus mapping and positional cloning is the best approach to identify this disease gene. To map the ACS gene, we conducted linkage analysis in two large ACS families, F1 and F2 (F2; reported elsewhere). Through segregation analysis, we first excluded three known loci associated with disorders of first and second pharyngeal arches (Treacher Collins syndrome, oculo-auriculo-vertebral spectrum, and Townes-Brocks syndrome). Next, we performed a wide genome search and we observed evidence of linkage to 1p21.1-q23.3 in F2 (LOD max 3.01 at theta = 0). Interestingly, this locus was not linked to the phenotype segregating in F1. Therefore, our results led to the mapping of a first locus of ACS (ACS1) and also showed evidence for genetic heterogeneity, suggesting that there are at least two loci responsible for this phenotype.
Resumo:
Amyotrophic lateral sclerosis (ALS) is an incurable neuromuscular disease that leads to a profound loss of life quality and premature death. Around 10% of the cases are inherited and ALS8 is an autosomal dominant form of familial ALS caused by mutations in the vamp-associated protein B/C (VAPB) gene. The VAPB protein is involved in many cellular processes and it likely contributes to the pathogenesis of other forms of ALS besides ALS8. A number of successful drug tests in ALS animal models could not be translated to humans underscoring the need for novel approaches. The induced pluripotent stem cells (iPSC) technology brings new hope, since it can be used to model and investigate diseases in vitro. Here we present an additional tool to study ALS based on ALS8-iPSC. Fibroblasts from ALS8 patients and their non-carrier siblings were successfully reprogrammed to a pluripotent state and differentiated into motor neurons. We show for the first time that VAPB protein levels are reduced in ALS8-derived motor neurons but, in contrast to over-expression systems, cytoplasmic aggregates could not be identified. Our results suggest that optimal levels of VAPB may play a central role in the pathogenesis of ALS8, in agreement with the observed reduction of VAPB in sporadic ALS.
Resumo:
Craniotubular dysplasias (CTD) are a heterogeneous group of genetic disorders of skeletal development, whose clinical and etiological classification is still much debated. One of the most common form is the autosomal dominant craniometaphyseal dysplasia (CMD) which is associated with mutation in the ANKH gene. In the literature a few families are reported with CMD phenotype that suggest an autosomal recessive (AR) pattern of inheritance. A candidate locus at 6q21-22 has been mapped in a large inbred Brazilian family, but the gene of the recessive form is still unknown. Our data on a female patient with CMD phenotype, born from healthy first degree cousins and displaying homozygosity for polymorphic markers at the 6q21-22 locus, further support the existence of an AR CMD, expanding its clinical spectrum to a more severe phenotype. (C) 2011 Wiley-Liss, Inc.
Resumo:
Familial idiopathic basal ganglia calcification, also known as ""Fahr`s disease"" (FD), is a neuropsychiatric disorder with autosomal dominant pattern of inheritance and characterized by symmetric basal ganglia calcifications and, occasionally, other brain regions. Currently, there are three loci linked to this devastating disease. The first one (IBGC1) is located in 14q11.2-21.3 and the other two have been identified in 2q37 (IBGC2) and 8p21.1-q11.13 (IBGC3). Further studies identified a heterozygous variation (rs36060072) which consists in the change of the cytosine to guanine located at MGEA6/CTAGE5 gene, present in all of the affected large American family linked to IBGC1. This missense substitution, which induces changes of a proline to alanine at the 521 position (P521A), in a proline-rich and highly conserved protein domain was considered a rare variation, with a minor allele frequency (MAF) of 0.0058 at the US population. Considering that the population frequency of a given variation is an indirect indicative of potential pathogenicity, we screened 200 chromosomes in a random control set of Brazilian samples and in two nuclear families, comparing with our previous analysis in a US population. In addition, we accomplished analyses through bioinformatics programs to predict the pathogenicity of such variation. Our genetic screen found no P521A carriers. Polling these data together with the previous study in the USA, we have now a MAF of 0.0036, showing that this mutation is very rare. On the other hand, the bioinformatics analysis provided conflicting findings. There are currently various candidate genes and loci that could be involved with the underlying molecular basis of FD etiology, and other groups suggested the possible role played by genes in 2q37, related to calcium metabolism, and at chromosome 8 (NRG1 and SNTG1). Additional mutagenesis and in vivo studies are necessary to confirm the pathogenicity for variation in the P521A MGEA6.
Resumo:
The gene SNRNP200 is composed of 45 exons and encodes a protein essential for pre-mRNA splicing, the 200 kDa helicase hBrr2. Two mutations in SNRNP200 have recently been associated with autosomal dominant retinitis pigmentosa (adRP), a retinal degenerative disease, in two families from China. In this work we analyzed the entire 35-Kb SNRNP200 genomic region in a cohort of 96 unrelated North American patients with adRP. To complete this large-scale sequencing project, we performed ultra high-throughput sequencing of pooled, untagged PCR products. We then validated the detected DNA changes by Sanger sequencing of individual samples from this cohort and from an additional one of 95 patients. One of the two previously known mutations (p.S1087L) was identified in 3 patients, while 4 new missense changes (p.R681C, p.R681H, p.V683L, p.Y689C) affecting highly conserved codons were identified in 6 unrelated individuals, indicating that the prevalence of SNRNP200-associated adRP is relatively high. We also took advantage of this research to evaluate the pool-and-sequence method, especially with respect to the generation of false positive and negative results. We conclude that, although this strategy can be adopted for rapid discovery of new disease-associated variants, it still requires extensive validation to be used in routine DNA screenings. (C) 2011 Wiley-Liss, Inc.
Resumo:
Split-hand/foot malformation (SHFM) associated with aplasia of long bones, SHFLD syndrome or Tibial hemimelia-ectrodactyly syndrome is a rare condition with autosomal dominant inheritance, reduced penetrance and an incidence estimated to be about 1 in 1,000,000 liveborns. To date, three chromosomal regions have been reported as strong candidates for harboring SHFLD syndrome genes: 1q42.2-q43, 6q14.1 and 2q14.2. We characterized the phenotype of nine affected individuals from a large family with the aim of mapping the causative gene. Among the nine affected patients, four had only SHFM of the hands and no tibial defects, three had both defects and two had only unilateral tibial hemimelia. In keeping with previous publications of this and other families, there was clear evidence of both variable expression and incomplete penetrance, the latter bearing hallmarks of anticipation. Segregation analysis and multipoint Lod scores calculations (maximum Lod score of 5.03 using the LINKMAP software) using all potentially informative family members, both affected and unaffected, identified the chromosomal region 17p13.1-17p13.3 as the best and only candidate for harboring a novel mutated gene responsible for the syndrome in this family. The candidate gene CRK located within this region was sequenced but no pathogenic mutation was detected.
Resumo:
Mandibular prognathism typically shows familial aggregation. Various genetic models have been described and it is assumed to be a multifactorial and polygenic trait, with a threshold for expression. Our goal was to examine specific genetic models of the familial transmission of this trait. The study sample comprised of 2,562 individuals from 55 families. Complete family histories for each proband were ascertained and the affection status of relatives were confirmed by lateral cephalograms, photographs, and dental models. Pedigrees were drawn using PELICAN and complex segregation analysis was performed using POINTER. Parts of some pedigrees were excluded to create one founder pedigrees, so the total N was 2,050. Analysis showed more affected females than males (P = 0.030). The majority of the pedigrees suggest autosomal dominant inheritance. Incomplete penetrance was demonstrated by the ratio of affected/unaffected parents and siblings. The heritability of mandibular prognathism was estimated to be 0.316. We conclude that there is a major gene that influences the expression of mandibular prognathism with clear signs of Mendelian inheritance and a multifactorial component. (C) 2007 Wiley-Liss, Inc.
Resumo:
P>Objective Congenital hypogonadotropic hypogonadism with anosmia (Kallmann syndrome) or with normal sense of smell is a heterogeneous genetic disorder caused by defects in the synthesis, secretion and action of gonadotrophin-releasing hormone (GnRH). Mutations involving autosomal genes have been identified in approximately 30% of all cases of hypogonadotropic hypogonadism. However, most studies that screened patients with hypogonadotropic hypogonadism for gene mutations did not include gene dosage methodologies. Therefore, it remains to be determined whether patients without detected point mutation carried a heterozygous deletion of one or more exons. Measurements We used the multiplex ligation-dependent probe amplification (MLPA) assay to evaluate the potential contribution of heterozygous deletions of FGFR1, GnRH1, GnRHR, GPR54 and NELF genes in the aetiology of GnRH deficiency. Patients We studied a mutation-negative cohort of 135 patients, 80 with Kallmann syndrome and 55 with normosmic hypogonadotropic hypogonadism. Results One large heterozygous deletion involving all FGFR1 exons was identified in a female patient with sporadic normosmic hypogonadotropic hypogonadism and mild dimorphisms as ogival palate and cavus foot. FGFR1 hemizygosity was confirmed by gene dosage with comparative multiplex and real-time PCRs. Conclusions FGFR1 or other autosomal gene deletion is a possible but very rare event and does not account for a significant number of sporadic or inherited cases of isolated GnRH deficiency.
Resumo:
More than 140 years after the first description of Friedreich ataxia, autosomal recessive ataxias have become one of the more complex fields in Neurogenetics. Currently this group of diseases contains more than 20 clinical entities and an even larger number of associated genes. Some disorders are very rare, restricted to isolated populations, and others are found worldwide. An expressive number of recessive ataxias are treatable, and responsibility for an accurate diagnosis is high. The purpose of this review is to update the practitioner on clinical and pathophysiological aspects of these disorders and to present an algorithm to guide the diagnosis.
Resumo:
Ring chromosomes are often associated with abnormal phenotypes due to loss of genomic material and also because of ring instability at mitosis after sister chromatid exchange events. We investigated ring chromosome instability in six patients with ring chromosomes 4, 14, 15, and 18 by examining 48- and 72-h lymphocyte cultures at the first, second and subsequent cell divisions after bromodeoxyuridine incorporation. Although most cells from all patients showed only one monocentric ring chromosome, ring chromosome loss and secondary aberrations were observed both in 48-and 72-h lymphocyte cultures and in metaphase cells of the different cell generations. We found no clear-cut correlation between ring size and ring instability; we also did not find differences between apparently complete rings and rings with genetic material loss. The cytogenetic findings revealed secondary aberrations in all ring chromosome patients. We concluded that cells with ring chromosome instability can multiply and survive in vivo, and that they can influence the patient's phenotype.
Resumo:
Background: Cytoadherence of Plasmodium falciparum-infected red blood cells is mediated by var gene-encoded P. falciparum erythrocyte membrane protein-1 and host receptor preference depends in most cases on which of the 50-60 var genes per genome is expressed. Enrichment of phenotypically homogenous parasites by panning on receptor expressing cells is fundamental for the identification of the corresponding var transcript. Methods: P. falciparum 3D7 parasites were panned on several transfected CHO-cell lines and their var transcripts analysed by i) reverse transcription/PCR/cloning/sequencing using a universal DBL alpha specific oligonucleotide pair and ii) by reverse transcription followed by quantitative PCR using 57 different oligonucleotide pairs. Results: Each cytoadherence selected parasite line also adhered to untransfected CHO-745 cells and upregulation of the var gene PFD995/PFD1000c was consistently associated with cytoadherence to all but one CHO cell line. In addition, parasites panned on different CHO cell lines revealed candidate var genes which reproducibly associated to the respective cytoadherent phenotype. The transcription profile obtained by RT-PCR/cloning/sequencing differed significantly from that of RT-quantitative PCR. Conclusion: Transfected CHO cell lines are of limited use for the creation of monophenotypic cytoadherent parasite lines. Nevertheless, 3D7 parasites can be reproducibly selected for the transcription of different determined var genes without genetic manipulation. Most importantly, var transcription analysis by RT-PCR/cloning/sequencing may lead to erroneous interpretation of var transcription profiles.
Resumo:
Primary Hodgkin`s lymphoma (HL) of the stomach is an extremely rare entity. Most cases of gastric involvement by HL are observed in the setting of disseminated disease. The nonspecific nature of the symptoms and endoscopic findings, which include a large malignant-looking ulcer and mass or wall thickening, together with the considerable histological overlap between HLs and some non-HLs or undifferentiated carcinoma, make the surgical resection diagnosis extremely difficult. An accurate diagnosis is important as treatment and outcome differ significantly for these neoplasms. In small endoscopic gastric biopsies and even in postoperative specimens, the precise histological diagnosis of HL is particularly challenging. Here, the authors report 5 cases of 2 women and 3 men aged 22 to 68, with gastric involvement by classic HLs-3 primary gastric HLs and 2 as part of widespread disease. All 5 patients presented with digestive symptoms. At endoscopy, the lesions presented as ulcerated and elevated lesions, with or without mucosal thickening. Four patients were misdiagnosed in the preoperative biopsy or in the gastrectomy specimen. Association with Epstein-Barr virus (EBV) was detected in 4 cases, with a predominance of subtype A EBV. These cases illustrate the significant difficulties, both clinical and pathological, in achieving the diagnosis of HL involving the stomach in immunocompetent patients.
Resumo:
Context: Physiological activation of the prokineticin pathway has a critical role in olfactory bulb morphogenesis and GnRH secretion in mice. Objective: To investigate PROK2 and PROKR2 mutations in patients with hypogonadotropic hypogonadism (HH) associated or not with olfactory abnormalities. Design: We studied 107 Brazilian patients with HH (63 with Kallmann syndrome and 44 with normosmic HH) and 100 control individuals. The coding regions of PROK2 and PROKR2 were amplified by PCR followed by direct automatic sequencing. Results: In PROK2, two known frameshift mutations were identified. Two brothers with Kallmann syndrome harbored the homozygous p. G100fsX121 mutation, whereas one male with normosmic HH harbored the heterozygous p. I55fsX56 mutation. In PROKR2, four distinct mutations (p. R80C, p. Y140X, p. L173R, and p. R268C) were identified in five patients with Kallmann syndrome and in one patient with normosmic HH. These mutations were not found in the control group. The p. R80C, p. L173R, and p. R268C missense mutations were identified in the heterozygous state in the HH patients and in their asymptomatic first-degree relatives. In addition, nomutations of FGFR1, KAL1, GnRHR, KiSS-1, or GPR54 were identified in these patients. Notably, the new nonsense mutation (p. Y140X) was identified in the homozygous state in an anosmic boy with micropenis, bilateral cryptorchidism, and high-arched palate. His asymptomatic parents were heterozygous for this severe defect. Conclusion: We expanded the repertoire of PROK2 and PROKR2 mutations in patients with HH. In addition, we show that PROKR2 haploinsufficiency is not sufficient to cause Kallmann syndrome or normosmic HH, whereas homozygous loss-of-function mutations either in PROKR2 or PROK2 are sufficient to cause disease phenotype, in accordance with the Prokr2 and Prok2 knockout mouse models.
Resumo:
The vesicle-associated membrane protein/synaptobrevin-associated membrane protein B (VAPB) Pro56Ser Mutation has been identified in Brazilian families showing various motor neuron syndromes. However, the neurophysiological characteristics of these patients have not been detailed, and some questions Still need to be solved, such as the possible presence of myotonia and the origin of the abdominal protrusion seen in most patients. The eventual finding of suggestive electrophysiological characteristics would be helpful not only for clinical diagnosis but also to selection of the appropriate DNA test. To clarify these questions we carried out sensory and motor conduction Studies, including symphatetic skin response, and needle examination in six genetically proven affected members. The electromyographic findings were those of a slowly progressive motor neuron disorder. Topographically, the abdominal muscles were severely affected, but the facial and laryngeal muscles were preserved or very mildly involved. Sensory conduction studies and sympathetic Skin responses were normal. No myotonic discharge was recorded. These findings are indistinguishable from those of other motor neuron disorders, although the predominant involvement of the proximal limbs and of the abdominal muscles may be of some help in the appropriate clinical setting.
Resumo:
Different genes might be involved in Colletotrichum lindemuthianum resistance in leaves and stem of common bean. This work aimed to study the genetic mechanisms of the resistance in the leaf and stem in segregating populations from backcrosses involving resistant cultivar AN 910408 and susceptible cultivar Ruda inoculated with spore suspensions of C. lindemuthianum race 83. Our results indicate that two genes which interact epistatically, one dominant and one recessive, are involved in the genetic control of leaf anthracnose resistance. As for stem anthracnose resistance, two genes also epistatic, one dominant and one recessive, explain the resistance to C. lindemuthianum race 83. The recessive gene is the same for leaf and stem resistance; however, the dominant genes are distinct and independent from each other. The three independent resistance genes of AN 910408 observed in this work could be derived from Guanajuato 31.