142 resultados para autopolymerising acrylic resin
Resumo:
Background. Severely resorbed mandibles often present a short band of keratinized tissue associated with a shallow vestibule. As a result, prominent muscle insertions are present, especially in the mental region of the mandible. This case report describes the deepening of the vestibular sulcus in an atrophic mandible by combining free gingival grafts harvested from the palate and a postoperative acrylic resin stent screwed on osseointegrated implants placed at the anterior region of the mandible. Study design. During the second-stage surgery, a split-thickness labial flap was reflected and apically sutured onto the periosteum. Two free gingival grafts were obtained and then sutured at this recipient site. A previously custom-made acrylic stent was then screwed onto the most distally positioned implants. To document the procedure`s stability over time, a metal ball was placed in the most apical part of the vestibule and standardized cephalometric radiographs were taken before and 6 months after the procedure. Linear measurements of vestibular depths over the observation time were realized using specific software for radiographic analysis. Results. The proposed technique augmented the band of attached masticatory mucosa, deepened the vestibule and prevented the muscle reinsertion. The difference between the 2 measurements of vestibular depths was 9.39 mm (initial 20.88 mm, final 11.49 mm) after a 6-month postoperative period. Conclusion. The technique, in combination with palatal mucosal graft and use of a postoperative stent, decreased the pull of mentalis muscle and provided a peri-implantally stable soft tissue around implants. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: e7-e14)
Resumo:
Statement of problem. Dental fractures can occur in endodontically treated teeth restored with posts. Purpose. The purpose of this study was to evaluate the in vitro fracture resistance of roots with glass-fiber and metal posts of different lengths. Material and methods. Sixty endodontically treated maxillary canines were embedded in acrylic resin, except for 4 mm of the cervical area, after removing the clinical crowns. The post spaces were opened with a cylindrical bur at low speed attached to a surveyor, resulting in preparations with lengths of 6 mm (group 6 mm), 8 mm (group 8 mm), or 10 mm (group 10 mm). Each group was divided into 2 subgroups according to the post material: cast post and core or glass-fiber post (n=30). The posts were luted with dual-polymerizing resin cement (Panavia F). Cast posts and cores of Co-Cr (Resilient Plus) crowns were made and cemented with zinc phosphate. Specimens were subjected to increasing compressive load (N) until fracture. Data were analyzed with 2-way ANOVA and the Tukey-Kramer test (alpha=.05). Results. The ANOVA analysis indicated significant differences (P<.05) among the groups, and the Tukey test revealed no significant difference among the metal posts of 6-mm length (26.5 N +/- 13.4), 8-mm length (25.2 N +/- 13.9), and 10-mm length (17.1 N +/- 5.2). Also, in the glass-fiber post group, there was no significant difference when posts of 8-mm length (13.4 N +/- 11.0) were compared with the 6-mm (6.9 N +/- 4.6) and 10-mm (31.7 N +/- 13.1) groups. The 10-mm-long post displayed superior fracture resistance, and the 6-mm-long post showed significantly lower mean values (P<.001). Conclusions. Within the limitations of this study, it was concluded that the glass-fiber post represents a viable alternative to the cast metal post, increasing the resistance to fracture of endodontically treated canines. (J Prosthet Dent 2009;101:183-188)
Resumo:
This study evaluated in vitro the bond strength of Epiphany sealer prepared with resinous solvent of Epiphany system (Thinning resin) by using a push-out test. Forty maxillary canines were sectioned transversally below the cementoenamel junction to provide 4-mm-thick dentin disks that were centered in aluminum rings and embedded in acrylic resin. Root canals were prepared with tapered diamond bur. Intraradicular dentin was treated with 1% NaOCl for 30 minutes, 17% ethylenediaminetetraacetic acid for 5 minutes, and flushed with distilled water for 1 minute. The specimens were randomly distributed into 4 groups (n = 10) according to the filling material: GI, Epiphany without photoactivation; GII, Epiphany prepared with solvent without photoactivation; Gill, Epiphany followed by photoactivation; and GIV, Epiphany prepared with solvent followed by photoactivation. After the setting time, the specimens were submitted to the push-out test. The highest mean value (14.91 +/- 2.82 MPa) was obtained with Epiphany prepared with solvent followed by photoactivation (GIV), which was statistically different (P < .01) from the other groups. Groups I (8.15 +/- 2.47 MPa), II (9.46 +/- 2.38 MPa), and III (9.80 +/- 2.51 MPa) had inferior bond strength values and were statistically similar among themselves (P > .01). The resinous solvent of Epiphany system increased the bond strength of Epiphany sealer to dentin walls when followed by photoactivation. (J Endod 2009;35: 251-255)
Resumo:
Objectives: The aim of this study was to assess the fracture resistance of endodontically treated teeth submitted to bleaching with 38% hydrogen peroxide activated by light-emitting diode (LED)-laser system. Methods: Fifty maxillary incisors were endodontically treated, received a zinc phosphate barrier and were embedded in acrylic resin until cemento-enamel junction. The specimens were distributed into five groups (n = 10) according to the number of bleaching sessions: GI, no treatment (control); GII, one session; GIII, two sessions; GIV, three sessions and GV, four sessions. The whitening gel was applied to the buccal surface of the tooth and inside the pulp chamber for three times in each session, followed by LED-laser activation. Specimens were submitted to the fracture resistance test (kN) and data were submitted to the Tukey-Kramer multiple comparisons test. Results: No significant difference (p > 0.05) was found between GI (0.71 +/- 0.30) and GII (0.65 +/- 0.13), which presented the highest strength values to fracture. Groups III (0.35 +/- 0.17), IV (0.23 +/- 0.13) and V (0.38 +/- 0.15) showed lower resistance to fracture (p < 0.01) when compared to GI and GII. Conclusions: The fracture resistance of endodontically treated teeth decreased after two sessions of bleaching with 38% hydrogen peroxide activated by LED-laser system. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To evaluate the influence of different endodontic materials on root fracture susceptibility. Methods: Seventy-two mandibular incisors were sectioned 1 mm below the cementoenamel junction to obtain roots of 12 mm length. Roots were submitted to chemomechanical preparation with the rotary instruments of Profile system. The obturation of root canals were performed with the following filling materials (n = 12): GI, unfilled teeth (control); GII, Endofill + gutta-percha; GIII, Sealer 26 + gutta-percha; GIV, AH Plus + gutta-percha; GV, Epiphany + gutta-percha; GVI, Epiphany + Resilon. After the sealers setting time, each root was embedded in acrylic resin. The specimens were then submitted to fracture resistance test using an Instron testing machine at 1 mm/min. Results: The ANOVA test showed no significant statistical difference (p > .05) among GI (162.16 +/- 41.4N), GII (168.46 +/- 37.5N), GIII (164.83 +/- 35.7N), GIV (168.29 +/- 38.7N), GV (172.36 +/- 20.6N) and GVI (193.11 +/- 42.8N). Conclusion: The core materials (gutta-percha or Resilon) combined with the tested endodontic sealers are not able to increase the root fracture resistance in canals submitted to chemomechanical preparation. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: This study analyzed the surface roughness and weight loss in Plex Glass specimens caused by dentifrices, one conventional (Sorriso) and three specific for dentures. Materials and Methods: Specimens (n = 6) of Plex Glass were divided into 5 groups including: negative control (water); positive control 1 (Sorriso) and 2 (Corega Brite); Experimental 1 (containing Chloramine T, antimicrobial agent); and Experimental 2 (containing Zonyl, detergent). Brushing was performed in a toothbrushing machine (Pepsodent) with a soft brush and a suspension of toothpaste and distilled water for 300 minutes, representing 6 years of brushing. Weight was measured initially and after the trial period; roughness was measured after the trial period only. The results of roughness and weight loss were analyzed using ANOVA and Tukey tests at 5%. Results: The negative control (2.82 +/- 4.41 mg) showed the lowest weight loss. Experimental 1 (13.62 +/- 4.29 mg) and Experimental 2 (15.4 +/- 5.80 mg) were equal statistically, and Sorriso (23.22 +/- 7.23 mg) and Corega (28.83 +/- 6.34 mg) produced the greatest weight loss. Concerning roughness, the negative control group (0.03 +/- 0.01 mu m) showed the lowest value. No significant differences were found between Corega (13.43 +/- 1.65 mu m), Experimental 1 (12.28 +/- 0.85 mu m), and Experimental 2 (10.68 +/- 2.56 mu m). The Sorriso toothpaste produced the greatest amount of surface roughness (19.15 +/- 2.36 mu m). Conclusion: Of the tested dentifrices, the experimental preparations proved to be the least abrasive and resulted in the lowest weight loss after brushing of the acrylic. Based on these findings, the use of these experimental dentifrices is advocated. Further evaluation based on the ability of these preparations to remove biofilms is required.
Resumo:
Statement of problem. In vitro studies on the retentive strengths of various cements used to retain posts have reported conflicting results. Purpose. The purpose of this study was to compare the tensile strength of commercially pure titanium and type III cast gold-alloy posts and cores cemented with zinc phosphate or resin cement. Material and methods. Forty-two extracted human canines were endoclontically treated. The root preparations were accomplished using Largo reamers (10 mm in depth and 1.7 mm in diameter). Acrylic resin patterns for the posts and cores were made, and specimens were cast in commercially pure titanium and in type III gold alloy (n=7). Fourteen titanium cast posts and cores were submitted to surface treatment with Kroll acid solution and to scanning electron microscopy (SEM), before and after acid etching. The groups (n=7) were cemented with zinc phosphate cement or resin cement (Panavia F). Tensile strengths were measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The results (Kgf) were statistically analyzed by 2-way ANCIVA (alpha=.05). Results. The 2-way ANOVA indicated that there were no significant differences among the groups tested. Retentive means for zinc phosphate and Panavia F cements were statistically similar. The bond strength was not Influenced by the alloy, the luting material, or the etching treatment. SEM analysis indicated that the etched surfaces were smoother than those that did not receive surface treatment, but this fact did not influence the results. Conclusions. Commercially pure titanium cast posts and cores cemented with zinc phosphate and resin cements demonstrated similar mean tensile retentive values. Retentive values were also similar to mean values recorded for cast gold-alloy posts and cores cemented with zinc phosphate cement and resin cements.
Resumo:
This study compared splinted and non-splinted implant-supported prosthesis with and without a distal proximal contact using a digital image correlation method. An epoxy resin model was made with acrylic resin replicas of a mandibular first premolar and second molar and with threaded implants replacing the second premolar and first molar. Splinted and non-splinted metal-ceramic screw-retained crowns were fabricated and loaded with and without the presence of the second molar. A single-camera measuring system was used to record the in-plane deformation on the model surface at a frequency of 1.0 Hz under a load from 0 to 250 N. The images were then analyzed with specialist software to determine the direct (horizontal) and shear strains along the model. Not splinting the crowns resulted in higher stress transfer to the supporting implants when the second molar replica was absent. The presence of a second molar and an effective interproximal contact contributed to lower stress transfer to the supporting structures even for non-splinted restorations. Shear strains were higher in the region between the molars when the second molar was absent, regardless of splinting. The opposite was found for the region between the implants, which had higher shear strain values when the second molar was present. When an effective distal contact is absent, non-splinted implant-supported restorations introduce higher direct strains to the supporting structures under loading. Shear strains appear to be dependent also on the region within the model, with different regions showing different trends in strain changes in the absence of an effective distal contact. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to assess in vitro the influence of Er:YAG laser irradiation distance on the shear strength of the bond between an adhesive restorative system and primary dentin. A total of 60 crowns of primary molars were embedded in acrylic resin and mechanically ground to expose a flat dentin surface and were randomly assigned to six groups (n = 10). The control group was etched with 37% phosphoric acid. The remaining five groups were irradiated (80 mJ, 2 Hz) at different irradiation distances (11, 12, 16, 17 and 20 mm), followed by acid etching. An adhesive agent (Single Bond) was applied to the bonding sites, and resin cylinders (Filtek Z250) were prepared. The shear bond strength tests were performed in a universal testing machine (0.5 mm/min). Data were submitted to statistical analysis using one-way ANOVA and the Kruskal-Wallis test (p < 0.05). The mean shear bond strengths were: 7.32 +/- 3.83, 5.07 +/- 2.62, 6.49 +/- 1.64, 7.71 +/- 0.66, 7.33 +/- 0.02, and 9.65 +/- 2.41 MPa in the control group and the groups irradiated at 11, 12, 16, 17, and 20 mm, respectively. The differences between the bond strengths in groups II and IV and between the bond strengths in groups II and VI were statistically significant (p < 0.05). Increasing the laser irradiation distance resulted in increasing shear strength of the bond to primary dentin.
Resumo:
To study the physical properties of two experimental dentifrices for complete denture hygiene, their effect on denture biofilm removal and antimicrobial properties by means of a clinical trial. The experimental dentifrices comprised two compositions. One was based on the addition of 1% chloramine T (D1) and the other on the presence of 0.01% fluorosurfactant (D2). Measurements of density, pH, consistency, rheological features and abrasiveness were conducted. Sixty complete denture wearers were randomly assigned to three groups and were instructed to brush their dentures with a specific toothbrush: (1) Water (control); (2) D1; or (3) D2. Each method was used for 21 days. Denture biofilm was disclosed by a 1% neutral red solution and quantified by means of digital photos taken from the internal surface. Microbiological assessment was conducted to quantify Candida sp. and mutans streptococci. Data were evaluated by one-way anova and Tukey HSD, or Kruskal-Wallis (alpha = 0.05). Both dentifrices decreased biofilm coverage when compared with the control group. D1 was the most efficacious treatment to reduce mutans streptococci, whereas D2 showed an intermediate outcome (anova, p < 0.040). No treatment influenced Candida albicans or non-albicans species (Kruskal-Wallis, p = 0.163 and 0.746, respectively). It can be concluded that brushing complete dentures with the experimental dentifrices tested could be effective for the removal of denture biofilm.
Resumo:
Two-photon polymerization is a powerful tool for fabricating three-dimensional micro/nano structures for applications ranging from nanophotonics to biology. To tailor such structure for specific purposes it is often important to dope them. In this paper we report on the fabrication of structures, with nanometric surface features (resolution of approximately 700 nm), using two-photon polymerization of an acrylic resin doped with the biocompatible polymer chitosan using a guest-host scheme. The fluorescence background in the Raman spectrum indicates the presence of chitosan throughout the structure. Mechanical characterization reveals that chitosan does not affect the mechanical properties of the host acrylic resin and, consequently, the structures exhibit excellent integrity. The approach presented in this work can be used in the fabrication of micro- and nanostructures containing biopolymers for biomedical applications.
Resumo:
Bond failures at the acrylic teeth and denture base resin interface are still a common clinical problem in prosthodontics. The effect of methyl methacrylate (MMA) monomer on the bond strength of three types of denture base resins (Acron MC, Lucitone 550 and QC-20) to two types of acrylic teeth (Biotone and Trilux) was evaluated. Twenty specimens were produced for each denture base resin/acrylic tooth combination and were randomly divided into control (acrylic teeth received no surface treatment) and experimental groups (MMA was applied to the surface of the acrylic teeth for 180 s) and were submitted to shear tests (1 mm/mm). Data (MPa) were analyzed using three-way ANOVA/Student`s test (alpha = 0.05). MMA increased the bond strength of Lucitone denture base resins and decreased the bond strength of QC-20. No difference was detected for the bond strength of Acron MC base resin after treatment with MMA. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the following acrylic resins: Clássico®, QC-20® and Lucitone®, recommended specifically for thermal polymerization, and Acron MC® and VIPI-WAVE®, made for polymerization by microwave energy. The resins were evaluated regarding their surface nanohardness and modulus of elasticity, while varying the polymerization time recommended by the manufacturer. They were also compared as to the presence of water absorbed by the samples. The technique used was nanoindentation, using the Nano Indenter XP®, MTS. According to an intra-group analysis, when using the polymerization time recommended by the manufacturer, a variation of 0.14 to 0.23 GPa for nanohardness and 2.61 to 3.73 GPa for modulus of elasticity was observed for the thermally polymerized resins. The variation for the resins made for polymerization by microwave energy was 0.15 to 0.22 GPa for nanohardness and 2.94 to 3.73 GPa for modulus of elasticity. The conclusion was that the Classico® resin presented higher nanohardness and higher modulus of elasticity values when compared to those of the same group, while Acron MC® presented the highest values for the same characteristics when compared to those of the same group. The water absorption evaluation showed that all the thermal polymerization resins, except for Lucitone®, presented significant nanohardness differences when submitted to dehydration or rehydration, while only Acron MC® presented no significant differences when submitted to a double polymerization time. Regarding the modulus of elasticity, it was observed that all the tested materials and products, except for Lucitone®, showed a significant increase in modulus of elasticity when submitted to a lack of hydration.
Resumo:
Objective: As resin-modified glass-ionomer cement (RMGIC) is an adhesive material, its association to dentin bonding agents (DBAs) was previously proposed. This study investigated the adjunctive behavior of an RMGIC with etch-and-rinse bonding systems under in situ/ex vivo cariogenic challenge. Method and Materials: Bovine enamel blocks (3 3 2 mm) were randomly assigned to group VP, Vitremer + its own primer (3M ESPE); group VSB, Vitremer + Single Bond (3M ESPE); and group VPB, Vitremer + Prime & Bond 2.1 (Dentsply). Two blocks of each group were randomly placed in an acrylic palatal appliance, so each appliance included six blocks. Volunteers (n = 10) wore these appliances according to given instructions to promote a sucrose challenge eight times/day for 15 days. After this period, the blocks were removed from the devices and cleaned, and demineralization was assessed through longitudinal microhardness analysis (Knoop indenter, 25 g/5 s). Data were submitted to three-way ANOVA and Tukey test (P < .05). Results: No treatment was able to completely avoid demineralization. All materials showed a statistically significant difference in mineral loss when the microhardness on the outer enamel was compared with deeper regions (P < .05). Conclusion: Association of the tested RMGICs with etch-and-rinse DBAs did not seem to be more beneficial against caries than the conventional treatment with RMGIC. (Quintessence Int 2010; 41: e192-e199)
Resumo:
The present study aimed to compare the fluoride (F-) release pattern of a nanofilled resin-modified glass ionomer cement (GIC) (Ketac N100 - KN) with available GICs used in dental practice (resin-modified GIC - Vitremer - V; conventional GIC - Ketac Molar - KM) and a nanofilled resin composite (Filtek Supreme - RC). Discs of each material (n=6) were placed into 4 mL of deionized water in sealed polyethylene vials and shaken, for 15 days. F- release (μg F-/cm²) was measured each day using a fluoride-ion specific electrode. Cumulative F- release means were statistically analyzed by linear regression analysis. In order to analyze the differences among materials and the influence of time in the daily F- release, 2-way ANOVA test was performed (α=0.05). The linear fits between the cumulative F- release profiles of RC and KM and time were weak. KN and V presented a strong relationship between cumulative F- release and time. There were significant differences between the daily F- release overtime up to the third day only for GICs materials. The daily F- release means for RC were similar overtime. The results indicate that the F- release profile of the nanofilled resin-modified GIC is comparable to the resin-modified GIC.