144 resultados para anomalous Eu3 5D0->F-7(0) transition
Resumo:
A simple method was developed for spectrophotometric determination of some nonsteroidal anti-inflammatory drugs (meloxicam, piroxicam and tenoxicam) based on the reduction of copper(II) in buffered solution (pH 7.0) and micellar medium containing 4,4'-dicarboxy-2,2'-buffered solution (pH 7.0) and micellar medium containing 4,4'-dicarboxy-2,2'-biquinoline acid. The-biquinoline acid. The absorbance values at 558 nm, characteristic of the formed Cu(I)/4,4'-dicarboxy-2,2'-biquinoline complexes, are linear with the concentrations (5.7-40 mmol L(-1), n = 5) of these oxicams (meloxicam r = 0.998; piroxicam and tenoxicam r = 0.999). The limit of detection values, in mmol L(-1), calculated for meloxicam (2.7), piroxicam (1.2) and tenoxicam (1.3) was obtained with 99% confidence level and the relative standard deviations for meloxicam (3.1%), piroxicam (5.1%) and tenoxicam (1.2%) were calculated using a 25 mmol L(-1) solution (n = 7). Mean recovery values for meloxicam, piroxicam and tenoxicam forms were 100 +/- 6.9, 98.6 +/- 3.6 and 99.4 +/- 2.5%, respectively. The conditional potential of Cu(II)/Cu(I) in complex medium of 7.5 mmol L(-1) BCA was determined to be 629 +/- 11 mV vs. NHE.
Resumo:
Background: The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results: In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS) experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413) follows a stoichiometry of 1:1. The binding constant (KB) observed for RACK1-Ki-1/57(122-413) interaction was of around (1.5 +/- 0.2) x 10(6) M(-1) and resulted in a dissociation constant (KD) of (0.7 +/- 0.1) x 10(-6) M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion: Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413) interact strongly under the tested conditions.
Characterization and greenhouse evaluation of Brazilian calcined nonapatite phosphate rocks for rice
Resumo:
Little information is available on the agronomic effectiveness of calcined nonapatite phosphate rock (PR) sources containing crandallite minerals in the form of Ca-Fe-Al-P for flooded and upland rice (Oryza sativa L.). We conducted laboratory and greenhouse studies to (i) characterize the mineralogical composition, (ii) investigate the solubility and dissolution behavior, and (iii) evaluate the agronomic effectiveness of two nonapatite PR sources (Juquia and Sapucaia) from Brazil and compared them with (i) a highly reactive Gafsa PR (Tunisia) containing apatite in the form of Ca-P and (ii) a reference water-soluble triple superphosphate (TSP) for flooded and upland rice. After calcination at 500 degrees C for 4 h, the solubility of Juquia PR and Sapucaia PR in neutral ammonium citrate (NAC) significantly increased from almost nil to a maximum of 39.3 and 114 g P kg(-1), respectively. X-ray diffraction showed that crystalline crandallite mineral was transformed to an amophorus form after calcination. The solubility behavior of the two calcined PR sources followed the same trend as Gafsa PR, that is, P release decreased with increasing equilibrium pH in the 0.01 M KCl solution (PH 3.0-8.0). At PH 3, the solubility followed: Gafsa PR > calcined Sapucaia PR > calcined Juquia PR. No P release was detected from any of the PR sources at pH >= 5.0 in the solution, indicating the Ca-P characteristic of the Ca-Fe-Al-P mineral controlled P dissolution of the calcined PR. Without calcination, both Juquia PR and Sapucaia PR were totally ineffective for upland rice grown on a Hiwassee clay loam (fine, kaolinitic, thermic Rhodic Kanhapludult) with pH 5.4 whereas a significant P response was observed with the calcined PR samples. For flooded rice grown on Hiwassee soil, the calcined Juquia PR and Sapucaia PR were 66 and 72%, respectively, as effective as TSP in increasing rice grain yield whereas Gafsa PR was ineffective. For upland rice grown on the unlimed soil, Gafsa PR was as effective as TSP in increasing rice grain yield whereas calcined Juquia PR and Sapucaia PR were 89 and 83% of TSP. The effectiveness of Gafsa PR was reduced to 0% after the soil was limed to pH 7.0 whereas the two calcined PR sources were reduced to 49% of TSP. Soil available P extracted by iron oxide impregnated filter paper (Pi test) or anion-exchange resin after rice harvest correlated well with P uptake by rice grain for flooded and upland rice.
Resumo:
Concurrent training is recommended for health improvement, but its acute effects on cardiovascular function are not well established. This study analyzed hemodynamics and autonomic modulation after a single session of aerobic (A), resistance (R), and concurrent (A + R) exercises. Twenty healthy subjects randomly underwent four sessions: control (C:30 min of rest), aerobic (A:30 min, cycle ergometer, 75% of VO(2) peak), resistance (R:6 exercises, 3 sets, 20 repetitions, 50% of 1 RM), and concurrent (AR: A + R). Before and after the interventions, blood pressure (BP), heart rate (HR), cardiac output (CO), and HR variability were measured. Systolic BP decreased after all the exercises, and the greatest decreases were observed after the A and AR sessions (-13 +/- 1 and -11 +/- 1 mmHg, respectively, P < 0.05). Diastolic BP decreased similarly after all the exercises, and this decrease lasted longer after the A session. CO also decreased similarly after the exercises, while systemic vascular resistance increased after the R and AR sessions in the recovery period (+4.0 +/- 1.7 and +6.3 +/- 1.9 U, respectively, P < 0.05). Stroke volume decreased, while HR increased after the exercises, and the greatest responses were observed after the AR session (SV, A = -14.6 +/- 3.6, R = -22.4 +/- 3.5 and AR = -23.4 +/- 2.4 ml; HR, A = +13 +/- 2, R = +15 +/- 2 vs. AR = +20 +/- 2 bpm, P < 0.05). Cardiac sympathovagal balance increased after the exercises, and the greatest increase was observed after the AR session (A = +0.7 +/- 0.8, R = +1.0 +/- 0.8 vs. AR = +1.2 +/- 0.8, P < 0.05). In conclusion, the association of aerobic and resistance exercises in the same training session did not potentiate postexercise hypotension, and increased cardiac sympathetic activation during the recovery period.
Resumo:
Samogin Lopes, FA, Menegon, EM, Franchini, E, Tricoli, V, and de M. Bertuzzi, RC. Is acute static stretching able to reduce the time to exhaustion at power output corresponding to maximal oxygen uptake? J Strength Cond Res 24(6): 1650-1656, 2010-This study analyzed the effect of an acute static stretching bout on the time to exhaustion (T(lim)) at power output corresponding to (V) over dotO(2)max. Eleven physically active male subjects (age 22.3 +/- 2.8 years, (V) over dotO(2)max 2.7 +/- 0.5 L . min(-1)) completed an incremental cycle ergometer test, 2 muscle strength tests, and 2 maximal tests to exhaustion at power output corresponding to (V) over dotO(2)max with and without a previous static stretching bout. The T(lim) was not significantly affected by the static stretching (164 +/- 28 vs. 150 +/- 26 seconds with and without stretching, respectively, p = 0.09), but the time to reach (V) over dotO(2)max (118 +/- 22 vs. 102 +/- 25 seconds), blood-lactate accumulation immediately after exercise (10.7 +/- 2.9 vs. 8.0 +/- 1.7 mmol . L(-1)), and oxygen deficit (2.4 +/- 0.9 vs. 2.1 +/- 0.7 L) were significantly reduced (p <= 0.02). Thus, an acute static stretching bout did not reduce T(lim) at power output corresponding to (V) over dotO(2)max possibly by accelerating aerobic metabolism activation at the beginning of exercise. These results suggest that coaches and practitioners involved with aerobic dependent activities may use static stretching as part of their warm-up routines without fear of diminishing high-intensity aerobic exercise performance.
Resumo:
Fourier transform near infrared (FT-NIR) spectroscopy was evaluated as an analytical too[ for monitoring residual Lignin, kappa number and hexenuronic acids (HexA) content in kraft pulps of Eucalyptus globulus. Sets of pulp samples were prepared under different cooking conditions to obtain a wide range of compound concentrations that were characterised by conventional wet chemistry analytical methods. The sample group was also analysed using FT-NIR spectroscopy in order to establish prediction models for the pulp characteristics. Several models were applied to correlate chemical composition in samples with the NIR spectral data by means of PCR or PLS algorithms. Calibration curves were built by using all the spectral data or selected regions. Best calibration models for the quantification of lignin, kappa and HexA were proposed presenting R-2 values of 0.99. Calibration models were used to predict pulp titers of 20 external samples in a validation set. The lignin concentration and kappa number in the range of 1.4-18% and 8-62, respectively, were predicted fairly accurately (standard error of prediction, SEP 1.1% for lignin and 2.9 for kappa). The HexA concentration (range of 5-71 mmol kg(-1) pulp) was more difficult to predict and the SEP was 7.0 mmol kg(-1) pulp in a model of HexA quantified by an ultraviolet (UV) technique and 6.1 mmol kg(-1) pulp in a model of HexA quantified by anion-exchange chromatography (AEC). Even in wet chemical procedures used for HexA determination, there is no good agreement between methods as demonstrated by the UV and AEC methods described in the present work. NIR spectroscopy did provide a rapid estimate of HexA content in kraft pulps prepared in routine cooking experiments.
Resumo:
Study design: This is cross-sectional study. Objectives: The aim of this study is to investigate the cardiac structure and function of subjects with spinal cord injury (SCI) and the impact of metabolic, hemodynamic and inflammatory factors on these parameters. Setting: Sao Paulo, Brazil. Methods: Sixty-five nondiabetic, nonhypertensive, sedentary, nonsmoker men (34 with SCI and 31 healthy subjects) were evaluated by medical history, anthropometry, laboratory tests, analysis of hemodynamic and inflammatory parameters and echocardiography. Results: Subjects with SCI had lower systolic blood pressure and higher levels of C-reactive protein and tumor necrosis factor receptors than the healthy ones. Echocardiography data showed that the SCI group presented similar left ventricular (LV) structural and systolic parameters, but lower initial diastolic velocity (Em) (9.2 +/- 0.5 vs 12.3 +/- 0.5 cm s(-1); P<0.001) and higher peak early inflow velocity (E)/Em ratio (7.7 +/- 0.5 vs 6.1 +/- 0.3; P = 0.009) compared with the able-bodied group, even after adjustment for systolic blood pressure and C-reactive protein levels. Furthermore, injured subjects with E/Em >8 had lower peak spectral longitudinal contraction (Sm) (9.0 +/- 0.7 vs 11.6 +/- 0.4cm s(-1); P<0.001) and cardiac output (4.2 +/- 0.2 vs 5.0 +/- 0.21 min(-1); P = 0.029), as well as higher relative wall thickness (0.38 +/- 0.01 vs 0.35 +/- 0.01; P = 0.005), than individuals with SCI with E/Em<8, but similar age, body mass index, blood pressure, injury level, metabolic parameters and inflammatory marker levels. Conclusion: Subjects with SCI presented impaired LV diastolic function in comparison with able-bodied ones. Moreover, worse LV diastolic function was associated with a pattern of LV concentric remodeling and subclinical decreases in systolic function among injured subjects. Overall, these findings might contribute to explain the increased cardiovascular risk reported for individuals with SCI. Spinal Cord (2011) 49, 65-69; doi: 10.1038/sc.2010.88; published online 27 July 2010
Resumo:
Hydrophobic agents are surface protection materials capable of increasing the angle of contact between the water and the concrete surface. For this reason, hydrophobic agents reduce water (in liquid form) penetration in concrete. Therefore, many European construction regulating agencies recommend this treatment in their maintenance policy. Nonetheless, there continues to be a gap in the understanding about which transport mechanisms of the concrete are modified by the hidrophobic agents. The aim of this study was to fill this gap in regards to reinforced concrete structures inserted in a marine environment. To this end, certain tests were used: Two involving permeability mechanism, one determining capillary absorption, and the last, a migration test used to estimate the chloride diffusion coefficient in saturated condition. Results indicated the efficacy of the hydrophobic agents in cases where capillary suction is the mechanism of water penetration (reduced by 2.12 and 7.0 times, depending of the product). However, when the transport mechanism is permeability this product is not advisable. Moreover, it was demonstrated that the chloride diffusion coefficient (in saturated condition) is reduced by the hydrophobic agents, however, the magnitude of this reduction is minor (reduced by 11% and 17%, depending on the product).
Resumo:
The salt-induced precipitation of lysozyme from aqueous solutions was studied through precipitation assays in which the equilibrium compositions of the coexisting phases were determined. Lysozyme precipitation experiments were carried out at 5, 15 and 25 degrees C and pH 7.0 with ammonium sulfate, sodium sulfate and sodium chloride as precipitating agents. In these experiments a complete separation of the coexisting phases (liquid and solid) could not be achieved. Nevertheless it was possible to determine the composition of the precipitate. The enzymatic activity of lysozyme in the supernatant phase as well as in the precipitate phase was also determined. The activity balance suggests that there is a relationship between the composition of the true precipitate and the total activity recovery. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The photodegradation of the herbicide clomazone in the presence of S(2)O(8)(2-) or of humic substances of different origin was investigated. A value of (9.4 +/- 0.4) x 10(8) m(-1) s(-1) was measured for the bimolecular rate constant for the reaction of sulfate radicals with clomazone in flash-photolysis experiments. Steady state photolysis of peroxydisulfate, leading to the formation of the sulfate radicals, in the presence of clomazone was shown to be an efficient photodegradation method of the herbicide. This is a relevant result regarding the in situ chemical oxidation procedures involving peroxydisulfate as the oxidant. The main reaction products are 2-chlorobenzylalcohol and 2-chlorobenzaldehyde. The degradation kinetics of clomazone was also studied under steady state conditions induced by photolysis of Aldrich humic acid or a vermicompost extract (VCE). The results indicate that singlet oxygen is the main species responsible for clomazone degradation. The quantum yield of O(2)(a(1)Delta(g)) generation (lambda = 400 nm) for the VCE in D(2)O, Phi(Delta) = (1.3 +/- 0.1) x 10(-3), was determined by measuring the O(2)(a(1)Delta(g)) phosphorescence at 1270 nm. The value of the overall quenching constant of O(2)(a(1)Delta(g)) by clomazone was found to be (5.7 +/- 0.3) x 10(7) m(-1) s(-1) in D(2)O. The bimolecular rate constant for the reaction of clomazone with singlet oxygen was k(r) = (5.4 +/- 0.1) x 10(7) m(-1) s(-1), which means that the quenching process is mainly reactive.
Resumo:
The production of red pigments and citrinin by Monascus purpureus CCT3802 was investigated in submerged batch cultures performed in two phases: in the first phase, cells were grown on glucose, at pH 4.5, 5.5 or 6.5; after glucose depletion, pH was adjusted, when necessary, to 4.5, 5.5, 6.5, 7.0, 8.0 or 8.5, for a production phase. The highest total red pigments absorbance of 11.3 U was 16 times greater than the lowest absorbance and was achieved with growth at pH 5.5, followed by production at pH 8.5, which causes an immediate reduction of the intra cellular red pigments from 75% to 17% of the total absorbance. The lowest citrinin concentration, 5.5 mg L-1, was verified in the same culture while the highest concentration, 55 mg L-1, was verified in cultures entirely carried out at pH 5.5. An alkaline medium, besides promoting intra cellular red pigments excretion, strongly represses citrinin synthesis.
Resumo:
The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Highly weathered soils represent about 3 billion ha of the tropical region. Oxisols represent about 60% of the Brazilian territory (more than 5 million km 2), in areas of great agricultural importance. Soil organic carbon (SOC) can be responsible for more than 80% of the cation exchange capacity (CEC) of highly weathered soils, such as Oxisols and Ultisols. The objective of this study was to estimate the contribution of the SOC to the CEC of Brazilian soils from different orders. Surface samples (0.0 to 0.2 m) of 30 uncultivated soils (13 Oxisols, 6 Ultisols, 5 Alfisols, 3 Entisols, I Histosol, 1 Inceptisol. and I Molisol), under native forests and from reforestation sites from Sao Paulo State, Brazil, were collected in order to obtain a large variation of (electro)chemical, physical, and mineralogical soil attributes. Total content of SOC was quantified by titulometric and colorimetric methods. Effective cation exchange capacity (ECEC) was obtained by two methods: the indirect method-summation-estimated the ECECi from the sum of basic cations (Ca+ Mg+ K+ Na) and exchangeable Al; and the direct ECECd obtained by the compulsive exchange method, using unbuffered BaCl2 solution. The contribution of SOC to the soil CEC was estimated by the Bennema statistical method. The amount of SOC var ied from 6.6 g kg(-1) to 213.4 g kg(-1). while clay contents varied from 40 g kg(-1) to 716 g kg(-1). Soil organic carbon contents were strongly associated to the clay contents, suggesting that clay content was the primary variable in controling the variability of SOC contents in the samples. Cation exchange capacity varied from 7.0 mmol(c) kg(-1) to 137.8 mmol(c) kg(-1) and had a positive Correlation with SOC. The mean contribution (per grain) of the SOC (1.64 mmol(c)) for the soil CEC was more than 44 times higher than the contribution of the clay fraction (0.04 mmol(c),). A regression model that considered the SOC content as the only significant variable explained 60% of the variation in the soil total CEC. The importance of SOC was related to soil pedogenetic process, since its contribution to the soil CEC was more evident in Oxisols with predominance of Fe and Al (oxihydr)oxides in the mineral fraction or in Ultisols, that presented illuviated clay. The influence of SOC in the sign and in the magnitude of the net charge of soils reinforce the importance of agricultural management systems that preserve high levels of SOC, in order to improve their sustainability.
Resumo:
The objectives were to evaluate preweaning performance, body composition, and efficiency of calves representing straightbred Nellore (NL), F(1), and 3-breed-cross systems. Energy requirements, milk production, and efficiency of 39 cow-calf pairs were recorded from straightbred NL calves from NL cows (10), crossbred (Angus-sired) calves from NL cows (ANL: 9), and crossbred calves (CC; Canchim-sired: 5/8 Charolais, 3/8 Zebu) from ANL (10) and Simmental x NL (10) cows. Cows and their respective calves were individually fed from birth to weaning (17 to 190 d postpartum). At 38 d of age, corn silage (7.8% CP, 2.19 Mcal of ME/kg of DM) was available to calves ad libitum. Milk production at 42, 98, 126, and 180 d postpartum was recorded by weighing calves before and after suckling. The ratio between GE and ME of milk was considered 1:0.93. Calves were slaughtered at weaning and the 9th-, 10th-, and 11th-rib section was removed for body composition estimation. The ANL calves were lighter (P < 0.01) at birth than the CC calves; the NL calves were intermediate. At weaning, the CC calves were heavier (P = 0.04) than the NL and ANL calves (230 +/- 5.5 vs. 172 +/- 8.1 and 209 +/- 8.6 kg, respectively). The ANL calves had greater (371 +/- 27 Mcal; P = 0.01) silage intake than the NL (270 +/- 25 Mcal) and CC (279 +/- 17 Mcal) calves. Milk energy intake was greater for the CC calves (970 +/- 38 Mcal of ME; P = 0.005) than the NL (670 +/- 57 Mcal of ME) and ANL (743 +/- 61 Mcal of ME) calves. The ANL calves compensated for the reduced milk production of the NL cows, which supplied less of their energy requirement for growth by increased silage intake. Calves from crossbred cows received a greater proportion of their total energy intake from milk. Crossbred calves had greater (P < 0.03) retained energy (retained energy = weaning body energy - birth body energy) than the NL calves (388 +/- 23 for ANL, and 438 +/- 15 for CC vs. 312 +/- 22 Mcal for NL calves). Percentages of water (P = 0.74) and chemical fat (P = 0.51) were similar among groups (63.7 +/- 0.6 and 14.3 +/- 0.7% for ANL calves, 63.1 +/- 0.4 and 14.7 +/- 0.5% for CC calves, and 63.3 +/- 0.6 and 13.7 +/- 0.7% of empty BW for water and chemical fat, respectively, for NL calves). Energetic efficiency (kcal of retained energy/Mcal of ME intake) was similar (P = 0.52) among groups (358 +/- 22 for ANL calves, 355 +/- 14 for CC calves, and 327 +/- 22 for NL calves). The greater BW gains and the differences in empty body composition at weaning were not enough to compensate for the greater ME intake of crossbreds. In this study, the crossbreeding systems evaluated increased preweaning calf performance but did not affect gross or energetic calf efficiency.
Resumo:
Many therapeutic agents are commercialized under their racemic form. The enantiomers can show differences in the pharmacokinetic and pharmacodynamic profile. The use of a pure enantiomer in pharmaceutical formulations may result in a better therapeutic index and fewer adverse effects. Atropine, an alkaloid of Atropa belladonna, is a racemic mixture of l-hyoscyamine and d-hyoscyamine. It is widely used to dilate the pupil. To quantify these enantiomers in ophthalmic solutions, an HPLC method was developed and validated using a Chiral AGP (R) column at 20 degrees C. The mobile phase consisted of a buffered phosphate solution (containing 10 mM 1-octanesulfonic acid sodium salt and 7.5 mM triethylamine, adjusted to pH 7.0 with orthophosphoric acid) and acetonitrile (99 + 1, v/v). The flow rate was 0.6 mL/min, with UV detection at 205 nm. In the concentration range of 14.0-26.0 mu g/mL, the method was found to be linear (r > 0.9999), accurate (with recovery of 100.1-100.5%), and precise (RSD system: <= 0.6%; RSD intraday: <= 1.1%; RSD interday: <= 0.9%). The method was specific, and the standard and sample solutions were stable for up to 72 h. The factorial design assures robustness with a variation of +/-10% in the mobile phase components and 2 degrees C of column temperature. The complete validation, including stress testing and factorial design, was studied and is presented in this research.