34 resultados para Western Ghats
Resumo:
The Mantiqueira Province represents a series of supracrustal segments of the South-American counterpart formed during the Gondwana Supercontinent agglutination. In this crustal domain, the process of escape tectonics played a conspicuous role, generating important NE-N-S-trending lineaments. The oblique component of the motions of the colliding tectonic blocks defined the transpressional character of the main suture zones: Lancinha-Itariri, Cubato-Arcadia-Areal, Serrinha-Rio Palmital in the Ribeira Belt and Sierra Ballena-Major Gercino in the Dom Feliciano Belt. The process as a whole lasted for ca. 60 Ma, since the initial collision phase until the lateral escape phase predominantly marked by dextral and subordinate sinistral transpressional shear zones. In the Dom Feliciano Belt, southern Brazil and Uruguay, transpressional event at 630-600 Ma is recognized and in the Ribeira Belt, despite less coevally, the transpressional event occurred between 590 and 560 Ma in its northern-central portion and between ca. 625 and 595 Ma in its central-southern portion. The kinematics of several shear zones with simultaneous movement in opposite directions at their terminations is explained by the sinuosity of these lineaments in relation to a predominantly continuous westward compression.
Resumo:
The studied sector of the central Ribeira Fold Belt (SE Brazil) comprises metatexites, diatexites, charnockites and blastomylonites. This study integrates petrological and thermochronological data in order to constrain the thermotectonic and geodynamic evolution of this Neoproterozoic-Ordovician mobile belt during Western Gondwana amalgamation. New data indicate that after an earlier collision stage at similar to 610 Ma (zircon, U-Pb age), peak metamorphism and lower crust partial melting, coeval with the main regional high grade D(1) thrust deformation, occurred at 572-562 Ma (zircon, U-Pb ages). The overall average cooling rate was low (<5 degrees C/Ma) from 750 to 250 degrees C (at similar to 455 Ma; biotite-WR Rb-Sr age), but disparate cooling paths indicate differential uplift between distinct lithotypes: (a) metatexites and blastomylonites show a overall stable 3-5 degrees C/Ma cooling rate; (b) charnockites and associated rocks remained at T>650 degrees C during sub-horizontal D(2) shearing until similar to 510-470 Ma (garnet-WR Sm-Nd ages) (1-2 degrees C/Ma), being then rapidly exhumed/cooled (8-30 degrees C/Ma) during post-orogenic D(3) deformation with late granite emplacement at similar to 490 Ma (zircon, U-Pb age). Cooling rates based on garnet-biotite Fe-Mg diffusion are broadly consistent with the geochronological cooling rates: (a) metatexites were cooled faster at high temperatures (6 degrees C/Ma) and slowly at low temperatures (0.1 degrees C/Ma), decreasing cooling rates with time; (b) charnockites show low cooling rates (2 degrees C/Ma) near metamorphic peak conditions and high cooling rates (120 degrees C/Ma) at lower temperatures, increasing cooling rates during retrogression. The charnockite thermal evolution and the extensive production of granitoid melts in the area imply that high geothermal gradients were sustained fora long period of time (50-90 Ma). This thermal anomaly most likely reflects upwelling of asthenospheric mantle and magma underplating coupled with long-term generation of high HPE (heat producing elements) granitoids. These factors must have sustained elevated crustal geotherms for similar to 100 Ma, promoting widespread charnockite generation at middle to lower crustal levels. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The basement in the `Altiplano` high plateau of the Andes of northern Chile mostly consists of late Paleozoic to Early Triassic felsic igneous rocks (Collahuasi Group) that were emplaced and extruded along the western margin of the Gondwana supercontinent. This igneous Suite crops out in the Collalluasi area and forms the backbone of most of the high Andes from latitude 20 degrees to 22 degrees S. Rocks of the Collahuasi Group and correlative formations form art extensive belt of volcanic and subvolcanic rocks throughout the main Andes of Chile, the Frontal Cordillera of Argentina (Choiyoi Group or Choiyoi Granite-Rhyolite Province), and the Eastern Cordillera of Peru. Thirteen new SHRIMP U-Pb zircon ages from the Collahuasi area document a bimodal timing for magnatism, with a dominant peak at about 300 Ma and a less significant one at 244 Ma. Copper-Mo porphyry mineralization is related to the younger igneous event. Initial Hf isotopic ratios for the similar to 300 Ma zircons range from about -2 to +6 indicating that the magmas incorporated components with a significant crustal residence time. The 244 Ma magmas were derived from a less enriched source, with the initial HT values ranging from +2 to +6, suggestive of a mixture with a more depleted component. Limited whole rock (144)Nd/(143)Nd and (87)Sr/(86)Sr isotopic ratios further support the likelihood that the Collahuasi Group magmatism incorporated significant older crustal components, or at least a mixture of crustal sources with more and less evolved isotopic signatures. (C) 2007 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The southwestern margin of the Eastern Ghats Belt characteristically exposes mafic dykes intruding massif-type charnockites. Dykes of olivine basalt of alkaline composition have characteristic trace element signatures comparable with Ocean Island Basalt (OIB). Most importantly strong positive Nb anomaly and low values of Zr/Nb ratio are consistent with OIB source of the mafic dykes. K-Ar isotopic data indicate two cooling ages at 740 and 530 Ma. The Pan-African thermal event could be related to reactivation of major shear zones and represented by leuco-granite vein along minor shear bands. And 740 Ma cooling age may indicate the low grade metamorphic imprints, noted in some of the dykes. Although no intrusion age could be determined from the present dataset, it could be constrained by some age data of the host charnockite gneiss and Alkaline rocks of the adjacent Prakasam Province. Assuming an intrusion age of similar to 1.3 Ga, Sr-Nd isotopic composition of the dykes indicate that they preserved time-integrated LREE enrichment. In view of the chemical signatures of OIB source, the mafic dykes could as well be related to continental rifting, around 1.3 Ga, which may have been initiated by intra-plate volcanism.