34 resultados para Weiss, Helga
Resumo:
We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05% per atomic mass unit. The method was tested on aerosols collected in Sin Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37% in coarse and between -1.04 and 0.02% in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta 66Z(Imperial) = 0.26 +/- 0.10%).
Resumo:
The activation parameters for the thermal decomposition of 13 acridinium-substituted 1,2-dioxetanes, bearing an aromatic moiety, were determined and their chemiluminescence emission quantum yields estimated, utilizing in situ photosensitized 1,2-dioxetane generation and observation of its thermal decomposition kinetics, without isolation of these highly unstable cyclic peroxides. Decomposition rate constants show linear free-energy correlation for electron-withdrawing substituents, with a Hammett reaction constant of rho = 1.3 +/- 0.1, indicating the occurrence of an intramolecular electron transfer from the acridinium moiety to the 1,2-dioxetane ring, as postulated by the intramolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Emission quantum yield behavior can also be rationalized on the basis of the intramolecular CIEEL mechanism, additionally evidencing its occurrence in this transformation. Both relations constitute the first experimental evidence for the occurrence of the postulated intramolecular electron transfer in the catalyzed and induced decomposition of properly substituted 1,2-dioxetanes.
Resumo:
The synthesis and study of the chemiluminescence parameters and thermal stability of 1,2-dioxetanes containing a spirofenchyl substituent are reported. Three fenchyl-substituted 1,2-dioxetanes were synthesized by photooxygenation of the corresponding alkenes, obtained by Barton-Kellogg olefination of the readily available (-)-fenchone. The fenchyl-substituted 1,2-dioxetanes showed thermal stabilities similar to those of the corresponding spiroadamantyl-substituted derivatives, although being slightly more labile with respect to unimolecular decomposition than the latter derivatives, which are widely utilized as labels in a great variety of chemiluminescent immunoassays. Fluoride induced decomposition of one triggerable fenchyl 1,2-dioxetane derivative showed kinetic parameters similar to those of the corresponding adamantyl-substituted derivative. The chemiluminescence quantum yields in the one percent range are also similar to that of other widely utilized chemiluminescence systems as the luminol reaction. These results indicate that fenchyl-substituted 1,2-dioxetanes can potentially be utilized as a cheaper alternative to substitute the corresponding spiroadamantyl derivatives in bioanalytical applications. (C) 2010 Elsevier B.V. All rights reserved.