70 resultados para WHITE-MATTER CHANGES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Few proton magnetic resonance spectroscopy ((1)H spectroscopy) studies have investigated the dorsolateral prefrontal cortex (DLPFC), a key region in the pathophysiology of major depressive disorder (MDD). We used (1)H spectroscopy to verify whether MDD patients differ from healthy controls (HQ in metabolite levels in this brain area. Thirty-seven unmedicated DSM-IV MDD patients were compared with 40 HC. Subjects underwent a short echo-time (1)H spectroscopy examination at 1.5 T, with an 8-cm(3) single voxel placed in the left DLPFC. Reliable absolute metabolite levels of N-acetyl aspartate (NAA), phosphocreatine plus creatine (PCr+Cr), choline-containing compounds (GPC+PC), myo-inositol, glutamate plus glutamine (Glu+Gln), and glutamate were obtained using the unsuppressed water signal as an internal reference. Metabolite levels in the left DLPFC did not statistically differ between MDD patients and HC. We found an interaction between gender and diagnosis on PCr+Cr levels. Male MDD patients presented lower levels of PCr+Cr than male HC, and female MDD patients presented higher levels of PCr+Cr than female HC. Moreover, length of illness was inversely correlated with NAA levels. These findings suggest that there is not an effect of diagnosis on the left DLPFC neurochemistry. Possible effects of gender on PCr+Cr levels of MDD patients need to be further investigated. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Bipolar disorder is frequently misdiagnosed as major depressive disorder, delaying appropriate treatment and worsening outcome for many bipolar individuals. Emotion dysregulation is a core feature of bipolar disorder. Measures of dysfunction in neural systems supporting emotion regulation might therefore help discriminate bipolar from major depressive disorder. Methods: Thirty-one depressed individuals-15 bipolar depressed (BD) and 16 major depressed (MDD), DSM-IV diagnostic criteria, ages 18-55 years, matched for age, age of illness onset, illness duration, and depression severity-and 16 age- and gender-matched healthy control subjects performed two event-related paradigms: labeling the emotional intensity of happy and sad faces, respectively. We employed dynamic causal modeling to examine significant among-group alterations in effective connectivity (EC) between right- and left-sided neural regions supporting emotion regulation: amygdala and orbitomedial prefrontal cortex (OMPFC). Results: During classification of happy faces, we found profound and asymmetrical differences in EC between the OMPFC and amygdala. Left-sided differences involved top-down connections and discriminated between depressed and control subjects. Furthermore, greater medication load was associated with an amelioration of this abnormal top-down EC. Conversely, on the right side the abnormality was in bottom-up EC that was specific to bipolar disorder. These effects replicated when we considered only female subjects. Conclusions: Abnormal, left-sided, top-down OMPFC-amygdala and right-sided, bottom-up, amygdala-OMPFC EC during happy labeling distinguish BD and MDD, suggesting different pathophysiological mechanisms associated with the two types of depression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: Impulsivity is associated with the clinical outcome and likelihood of risky behaviors among bipolar disorder (BD) patients. Our previous study showed an inverse relationship between impulsivity and orbitofrontal cortex (OFC) volume in healthy subjects. We hypothesized that BD patients would show an inverse relationship between impulsivity and volumes of the OFC, anterior cingulate cortex (ACC), medial prefrontal cortex, and amygdala, which have been implicated in the pathophysiology of BD. Methods: Sixty-three BD patients were studied (mean +/- SD age = 38.2 +/- 11.5 years; 79% female). The Barratt Impulsiveness Scale (BIS), version 11A, was used to assess trait impulsivity. Images were processed using SPM2 and an optimized voxel-based morphometry protocol. We examined the correlations between BIS scores and the gray matter (GM) and white matter (WM) volumes of the prespecified regions. Results: Left rostral ACC GM volume was inversely correlated with the BIS total score (t = 3.95, p(corrected) = 0.003) and the BIS motor score (t = 5.22, p(corrected) < 0.001). In contrast to our hypothesis, OFC volumes were not significantly associated with impulsivity in BD. No WM volume of any structure was significantly correlated with impulsivity. No statistical association between any clinical variable and the rostral ACC GM volumes reached significance. Conclusions: Based on our previous findings and the current results, impulsivity may have a different neural representation in BD and healthy subjects, and the ACC may be involved in the pathophysiology of abnormal impulsivity regulation in BD patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulatioin in BD. Objective: To use tract-based spatial statistics (TBSS) to examine VVM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Design: Cross-sectional, case-control, whole-brain DTI using TBSS. Setting: University research institute. Participants: Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type 1 (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Main Outcome Measures: Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Results: Subjects with BD vs controls had significantly greater FA (t > 3.0, P <=.05 corrected) in the left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P <=.05 corrected) in the right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P <.01) were found between age and FA in bilateral uncinate fasciculi and in the right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P <.01) was observed in the left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. Conclusions: To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that diminished with age and with alcohol or other drug abuse, as well as reduced WM FA in the right OMPFC. Mood stabilizers and depressed episode reduced WM FA in left-sided sensory visual processing regions among subjects with BD. Abnormal right vs left asymmetry in FA in OMPFC WM among subjects with BD, likely reflecting increased proportions of left-sided longitudinally aligned and right-sided obliquely aligned myelinated fibers, may represent a biologic mechanism for mood dysregulation in BD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prognosis of glioblastomas is still extremely poor and the discovery of novel molecular therapeutic targets can be important to optimize treatment strategies. Gene expression analyses comparing normal and neoplastic tissues have been used to identify genes associated with tumorigenesis and potential therapeutic targets. We have used this approach to identify differentially expressed genes between primary glioblastomas and non-neoplastic brain tissues. We selected 20 overexpressed genes related to cell cycle, cellular movement and growth, proliferation and cell-to-cell signaling and analyzed their expression levels by real time quantitative PCR in cDNA obtained from microdissected fresh tumor tissue from 20 patients with primary glioblastomas and from 10 samples of non-neoplastic white matter tissue. The gene expression levels were significantly higher in glioblastomas than in non-neoplastic white matter in 18 out of 20 genes analyzed: P < 0.00001 for CDKN2C, CKS2, EEF1A1, EMP3, PDPN, BNIP2, CA12, CD34, CDC42EP4, PPIE, SNAI2, GDF15 and MMP23b; and NFIA (P: 0.0001), GPS1 (P: 0.0003), LAMA1 (P: 0.002), STIM1 (P: 0.006), and TASP1 (P: 0.01). Five of these genes are located in contiguous loci at 1p31-36 and 2 at 17q24-25 and 8 of them encode surface membrane proteins. PDPN and CD34 protein expression were evaluated by immunohistochemistry and they showed concordance with the PCR results. The present results indicate the presence of 18 overexpressed genes in human primary glioblastomas that may play a significant role in the pathogenesis of these tumors and that deserve further functional investigation as attractive candidates for new therapeutic targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe the long-term clinical outcome of a patient with Leigh-like syndrome presenting as an early onset encephalopathy and peripheral neuropathy caused by the T8993G mutation in the mitochondrial DNA (mtDNA). Clinical follow-up for 20 years revealed a peculiar pattern of slow disease progression, characterized by the addition of new minor deficits, while worsening of previous symptoms was mild. Brain MRI revealed cerebellar atrophy, diffuse demyelination of corona radiata and parietal white matter, and bilateral and symmetrical putaminal lesions. The proportion of mutant mtDNAs in blood was 72% (+/- 0.02%) and in skeletal muscle was 81% (+/- 0.4%). Leigh-like syndrome caused by the T8993G mtDNA mutation is a progressive disease, although not necessarily associated with an aggressive clinical course. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and purpose: Apart from the central nervous system parasitic invasion in chagasic immunodeficient patients and strokes due to heart lesions provoked by the disease, the typical neurological syndromes of the chronic phase of Chagas` disease (CD) have not yet been characterized, although involvement of the peripheral nervous system has been well documented. This study aims at investigating whether specific signs of central nervous system impairment might be associated with the disease. Methods: Twenty-seven patients suffering from the chronic form of Chagas` disease (CCD) and an equal number of controls matched for sex, age, educational and socio-cultural background, and coming from the same geographical regions, were studied using neurological examinations, magnetic resonance images, and electroencephalographic frequency analysis. Results: Nineteen patients were at the stage A of the cardiac form of the disease (without documented structural lesions or heart failure). Dizziness, brisk reflexes, and ankle and knee areflexia were significantly more prevalent in the patients than in the controls. The significant findings in quantitative electroencephalogram were an increase in the theta relative power and a decrease in the theta dominant frequency at temporal-occipital derivations. Subcortical, white matter demyelination was associated with diffuse theta bursts and theta-delta slowing in two patients. Conclusions: Our findings suggest a discrete and unspecific functional cortical disorder and possible white matter lesions in CD. The focal nervous system abnormalities in CD documented here did not seem to cause significant functional damage or severely alter the patient`s quality of life. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To obtain cerebral perfusion territories of the left, the right. and the posterior circulation in humans with high signal-to-noise ratio (SNR) and robust delineation. Materials and Methods: Continuous arterial spin labeling (CASL) was implemented using a dedicated radio frequency (RF) coil. positioned over the neck, to label the major cerebral feeding arteries in humans. Selective labeling was achieved by flow-driven adiabatic fast passage and by tilting the longitudinal labeling gradient about the Y-axis by theta = +/- 60 degrees. Results: Mean cerebral blood flow (CBF) values in gray matter (GM) and white matter (WM) were 74 +/- 13 mL center dot 100 g(-1) center dot minute(-1) and 14 +/- 13 mL center dot 100 g(-1) center dot minute(-1), respectively (N = 14). There were no signal differences between left and right hemispheres when theta = 0 degrees (P > 0.19), indicating efficient labeling of both hemispheres. When theta = +60 degrees, the signal in GM on the left hemisphere, 0.07 +/- 0.06%, was 92% lower than on the right hemisphere. 0.85 +/- 0.30% (P < 1 x 10(-9)). while for theta = -60 degrees, the signal in the right hemisphere. 0.16 +/- 0.13%, was 82% lower than on the contralateral side. 0.89 +/- 0.22% (P < 1 x 10(-10)). Similar attenuations were obtained in WM. Conclusion: Clear delineation of the left and right cerebral perfusion territories was obtained, allowing discrimination of the anterior and posterior circulation in each hemisphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: Abnormalities in the morphology and function of two gray matter structures central to emotional processing, the perigenual anterior cingulate cortex (pACC) and amygdala, have consistently been reported in bipolar disorder (BD). Evidence implicates abnormalities in their connectivity in BD. This study investigates the potential disruptions in pACC-amygdala functional connectivity and associated abnormalities in white matter that provides structural connections between the two brain regions in BD. Methods: Thirty-three individuals with BD and 31 healthy comparison subjects (HC) participated in a scanning session during which functional magnetic resonance imaging (fMRI) during processing of face stimuli and diffusion tensor imaging (DTI) were performed. The strength of pACC-amygdala functional connections was compared between BD and HC groups, and associations between these functional connectivity measures from the fMRI scans and regional fractional anisotropy (FA) from the DTI scans were assessed. Results: Functional connectivity was decreased between the pACC and amygdala in the BD group compared with HC group, during the processing of fearful and happy faces (p < .005). Moreover, a significant positive association between pACC-amygdala functional coupling and FA in ventrofrontal white matter, including the region of the uncinate fasciculus, was identified (p < .005). Conclusion: This study provides evidence for abnormalities in pACC-amygdala functional connectivity during emotional processing in BD. The significant association between pACC-amygdala functional connectivity and the structural integrity of white matter that contains pACC-amygdala connections suggest that disruptions in white matter connectivity may contribute to disturbances in the coordinated responses of the pACC and amygdala during emotional processing in BD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Convergent evidence implicates white matter abnormalities in bipolar disorder. The cingulum is an important candidate structure for study in bipolar disorder as it provides substantial white matter connections within the corticolimbic neural system that subserves emotional regulation involved in the disorder. Aims To test the hypothesis that bipolar disorder is associated with abnormal white matter integrity in the cingulum. Method Fractional anisotropy in the anterior and posterior cingulum was compared between 42 participants with bipolar disorder and 42 healthy participants using diffusion tensor imaging. Results Fractional anisotropy was significantly decreased in the anterior cingulum in the bipolar disorder group compared with the healthy group (P=0.003); however, fractional anisotropy in the posterior cingulum did not differ significantly between groups. Conclusions Our findings demonstrate abnormalities in the structural integrity of the anterior cingulum in bipolar disorder. They extend evidence that supports involvement of the neural system comprising the anterior cingulate cortex and its corticolimbic gray matter connection sites in bipolar disorder to implicate abnormalities in the white matter connections within the system provided by the cingulum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Contrary to expectations derived from preclinical studies of the effects of stress, and imaging studies of adults with posttraumatic stress disorder (PTSD), there is no evidence of hippocampus atrophy in children with PTSD. Multiple pediatric studies have reported reductions in the corpus callosum - the primary white matter tract in the brain. Consequently, in the present study, diffusion tensor imaging was used to assess white matter integrity in the corpus callosum in 17 maltreated children with PTSD and 15 demographically matched normal controls. Children with PTSD had reduced fractional anisotropy in the medial and posterior corpus, a region which contains interhemispheric projections from brain structures involved in circuits that mediate the processing of emotional stimuli and various memory functions - core disturbances associated with a history of trauma. Further exploration of the effects of stress on the corpus callosum and white matter development appears a promising strategy to better understand the pathophysiology of PTSD in children. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Schizophrenia is likely to be a consequence of serial alterations in a number of genes that, together with environmental factors, will lead to the establishment of the illness. The dorsolateral prefrontal cortex (Brodmann`s Area 46) is implicated in schizophrenia and executes high functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts, correct social behavior and personality expression. We performed a comparative proteome analysis using two-dimensional gel electrophoresis of pools from 9 schizophrenia and 7 healthy control patients` dorsolateral prefrontal cortex aiming to identify, by mass spectrometry, alterations in protein expression that could be related to the disease. In schizophrenia-derived samples, our analysis revealed 10 downregulated and 14 upregulated proteins. These included alterations previously implicated in schizophrenia, such as oligodendrocyte-related proteins (myelin basic protein and transferrin), as well as malate dehydrogenase, aconitase, ATP synthase subunits and cytoskeleton-related proteins. Also, six new putative disease markers were identified, including energy metabolism, cytoskeleton and cell signaling proteins. Our data not only reinforces the involvement of proteins previously implicated in schizophrenia, but also suggests new markers, providing further information to foster the comprehension of this important disease. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous magnetic resonance imaging (MRI) studies described consistent age-related gray matter (GM) reductions in the fronto-parietal neocortex, insula and cerebellum in elderly subjects, but not as frequently in limbic/paralimbic structures. However, it is unclear whether such features are already present during earlier stages of adulthood, and if age-related GM changes may follow non-linear patterns at such age range. This voxel-based morphometry study investigated the relationship between GM volumes and age specifically during non-elderly life (18-50 years) in 89 healthy individuals (48 males and 41 females). Voxelwise analyses showed significant (p < 0.05, corrected) negative correlations in the right prefrontal cortex and left cerebellum, and positive correlations (indicating lack of GM loss) in the medial temporal region, cingulate gyrus, insula and temporal neocortex. Analyses using ROI masks showed that age-related dorsolateral prefrontal volume decrements followed non-linear patterns, and were less prominent in females compared to males at this age range. These findings further support for the notion of a heterogeneous and asynchronous pattern of age-related brain morphometric changes, with region-specific non-linear features. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemical stimulation of the lateral nucleus of the habenula (LHb), an area implicated in the regulation of serotonergic activity in raphe nuclei, affects the acquisition of inhibitory avoidance and escape expression of rats submitted to the elevated T-maze test of anxiety. Here, we investigated whether facilitation of 5-HT-mediated neurotransmission in the dorsal periaqueductal gray (dPAG) accounts for the behavioral consequences in the elevated T-maze induced by chemical stimulation of the LHb. The dPAG in the midbrain, which is innervated by 5-HT fibers originating from the dorsal raphe nucleus (DRN), has been consistently implicated in the genesis/regulation of anxiety- and fear-related defensive responses. The results showed that intra-dPAG injection of WAY-100635 or ketanserin, 5-HT(1A) and 5-HT(2A/2C) receptor antagonists, respectively, counteracted the anti-escape effect caused by bilateral intra-LHb injection of kainic acid (60 pmol/0.2 mu l). Ketanserin, but not WAY-100635, blocked kainic acid`s facilitatory effect on inhibitory avoidance acquisition. Overall, the results suggest that the pathway connecting the LHb to the DRN is involved in the control of 5-HT release in the dPAG, and facilitation of 5-HT-mediated neurotransmission in the latter area distinctively impacts upon the expression of anxiety- and fear-related defensive behaviors. While stimulation of 5-HT(1A) receptors selectively affects escape performance, 5-HT(2A/2C) receptors modulate both inhibitory avoidance and escape. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to evaluate the effect of environmental temperature on ruminal fermentation and on mineral levels of growing ruminants, it was used 12 male calves (initial average weight 82.9 ± 7.7 kg, 100 days of age), were employed in a randomized block design (by weight) experiment, with repeated weight measurement and two environmental temperatures: thermoneutral (24ºC) and heat-stressed (33ºC), during 38 days. The animals exposed to 33ºC presented lower dry matter ingestion, lower T3 (triiodothyronine) serum level, higher ammoniacal nitrogen (NH3-N) level in the rumen liquid, and higher rectal and body temperatures during all the experimental period when compared to the animals kept in thermoneutral environment (24ºC). The animals kept under heat stress environment (33ºC) presented higher calcium serum level, which was the highest on 31st day and the lowest on the 38th day of the experiment; phosphorus level was the lowest during all the experimental period; sodium level was lower on the 17th, 31st and 38th experimental days. Potassium and zinc levels were lower after 24 days; copper level was lower until the 24th day; magnesium level was higher until the 17th day, if compared to the ones from the animals kept in thermoneutral environment (24ºC). The heat-stressed animals presented higher levels of ammoniacal nitrogen in the ruminal liquid and a decrease in the phosphorus, sodium, potassium and zinc serum levels. These results show the necessity of changes on feed management to ruminants in temperatures over the thermal comfort limits so that performance loss is decreased.