138 resultados para UV degradation
Resumo:
Organosolv lignins can replace petroleum chemicals such as phenol either partially or totally in various applications. Eight lignins, seven of which corresponded to the ethanol-water fractionation of bagasse and the other to a reference lignin (Alcell (R)) were analyzed with the aim to evaluate their chemical and physicochemical characteristics. The purity of the lignin fractions was determined by high pressure liquid chromatography (HPLC) and by ash content. Fourier Transform-Infrared Spectroscopy (FTIR) techniques and differential UV spectroscopy were applied to identify the chemical groups in the lignin samples. The molecular weight distribution was determined by size exclusion chromatography (HPSEC). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to determine the mass loss due to the high temperature treatment. The lignins studied showed the presence of p-hydroxyphenyl (H unit) and a greater proportion of guaiacyl (G unit) moieties, lower purity, similar or greater amount of phenolic hydroxyl groups, and higher degradation temperatures, than the Alcell (R) lignin.
Resumo:
An environmentally friendly analytical procedure with high sensitivity for determination of carbaryl pesticide in natural waters was developed. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. A long pathlength (100 cm) flow cell based on a liquid core waveguide (LCW) was employed to increase the sensitivity in detection of the indophenol formed from the reaction between carbaryl and p-aminophenol (PAP). A clean-up step based on cloud-point extraction was explored to remove the interfering organic matter, avoiding the use of toxic organic solvents. A linear response was observed within the range 5-200 mu g L(-1) and the detection limit, coefficient of variation and sampling rate were estimated as 1.7 mu g L(-1) (99.7% confidence level), 0.7% (n=20) and 55 determinations per hour, respectively. The reagents consumption was 1.9 mu g of PAP and 5.7 mu g of potassium metaperiodate, with volume of 2.6 mL of effluent per determination. The proposed procedure was selective for the determination of carbaryl, without interference from other carbamate pesticides. Recoveries within 84% and 104% were estimated for carbaryl spiked to water samples and the results obtained were also in agreement with those found by a batch spectrophotometric procedure at the 95% confidence level. The waste of the analytical procedure was treated with potassium persulphate and ultraviolet irradiation, yielding a colorless residue and a decrease of 94% of total organic carbon. In addition, the residue after treatment was not toxic for Vibrio fischeri bacteria. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
The response of the myocardium to an ischaemic insult is regulated by two highly homologous protein kinase C (PKC) isozymes, delta and epsilon PKC. Here, we determined the spatial and temporal relationships between these two isozymes in the context of ischaemia/reperfusion (I/R) and ischaemic preconditioning (IPC) to better understand their roles in cardioprotection. Using an ex vivo rat model of myocardial infarction, we found that short bouts of ischaemia and reperfusion prior to the prolonged ischaemic event (IPC) diminished delta PKC translocation by 3.8-fold and increased epsilon PKC accumulation at mitochondria by 16-fold during reperfusion. In addition, total cellular levels of delta PKC decreased by 60 +/- 2.7% in response to IPC, whereas the levels of epsilon PKC did not significantly change. Prolonged ischaemia induced a 48 +/- 11% decline in the ATP-dependent proteasomal activity and increased the accumulation of misfolded proteins during reperfusion by 192 +/- 32%; both of these events were completely prevented by IPC. Pharmacological inhibition of the proteasome or selective inhibition of epsilon PKC during IPC restored delta PKC levels at the mitochondria while decreasing epsilon PKC levels, resulting in a loss of IPC-induced protection from I/R. Importantly, increased myocardial injury was the result, in part, of restoring a delta PKC-mediated I/R pro-apoptotic phenotype by decreasing pro-survival signalling and increasing cytochrome c release into the cytosol. Taken together, our findings indicate that IPC prevents I/R injury at reperfusion by protecting ATP-dependent 26S proteasomal function. This decreases the accumulation of the pro-apoptotic kinase, delta PKC, at cardiac mitochondria, resulting in the accumulation of the pro-survival kinase, epsilon PKC.
Combined photocatalytic and fungal processes for the treatment of nitrocellulose industry wastewater
Resumo:
The objective of this work was to characterize the delignification effluent originating from the delignification industry and evaluate the combination of the fungus and photocatalytic process (TiO(2)/UV system) for the treatment of this effluent. The delignification effluent has proven harmful to the environment because it presents high color (3516 CU), total phenol (876 mg/L and TOC (1599 mg/L) and is also highly toxic even in a low concentration. The results of photocatalysis were 11%, 25% and 13% higher for reductions in color, total phenol and TOC, respectively. The combined treatments presented benefits when compared to the non-combined treatments. Fungus and photocatalysis in combination proved to be the best treatment, reducing the color, total phenol, toxicity (inhibition of Escherichia coli growth) and TOC by 94.2%, 92.6%, 4.9% and 62%, respectively. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.
Resumo:
This work work evaluates linoleic acid peroxidation reactions initiated by Fe(3+)-reducing compounds recovered from Eucalyptus grandis, biotreated with the biopulping fungus Ceriporiopsis subvermispora. The aqueous extracts from biotreated wood had the ability to reduce Fe(3+) ions from freshly prepared solutions. The compounds responsible for the Fe(3+)-reducing activity corresponded to UV-absorbing substances with apparent molar masses from 3 kDa to 5 kDa. Linoleic acid peroxidation reactions conducted in the presence of Fe(3+) ions and the Fe(3+)-reducing compounds showed that the rate of O(2) consumption during peroxidation was proportional to the Fe(3+)-reducing activity present in each extract obtained from biotreated wood. This peroxidation reaction was coupled with in-vitro treatment of ball-milled E. grandis wood. Ultraviolet data showed that the reaction system released lignin fragments from the milled wood. Size exclusion chromatography data indicated that the solubilized material contained a minor fraction representing high-molar-mass molecules excluded by the column and a main low-molar-mass peak. Overall evaluation of the data suggested that the Fe(3+)-reducing compounds formed during wood biodegradation by C subvermispora can mediate lignin degradation through linoleic acid peroxidation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.
Resumo:
Thermal action on timber causes it to degrade through combustion of its chemical components, which leads to the release of vapors, combustible gases and surface char. This diminishes its load capacity, due to the reduction of its cross section by charring and to changes in its mechanical properties of strength and stiffness as a function of its exposure to high temperatures. This paper reports the charring rates observed on Eucalyptus structural beams and presents a numerical and experimental study of the behavior of these beams when exposed to fire, in which the properties of strength and stiffness were evaluated as a function of rising temperatures, allowing an analysis of the effect of the section factor on the internal rise in temperature of structural Eucalyptus beams.
Resumo:
Four anaerobic fluidized bed reactors filled with activated carbon (R1), expanded clay (R2), glass beads (R3) and sand (R4) were tested for anaerobic degradation of LAS. All reactors were inoculated with sludge from a UASB reactor treating swine wastewater and were fed with a synthetic substrate supplemented with approximately 20 mg l(-1) of LAS, on average. To 560 mg l(-1) COD influent, the maximum COD and LAS removal efficiencies were mean values of 97 +/- 2% and 99 +/- 2%, respectively, to all reactors demonstrating the potential applicability of this reactor configuration for treating LAS. The reactors were kept at 30 degrees C and operated with a hydraulic retention time (HRT) of 18 h. The use of glass beads and sand appear attractive because they favor the development of biofilms capable of supporting LAS degradation. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of samples from reactors R3 and R4 revealed that these reactors gave rise to broad microbial diversity, with microorganisms belonging to the phyla Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria, indicating the role of microbial consortia in degrading the surfactant LAS. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to present a methodology with superior efficiency for inactivating pathogenic indicators commonly found in domestic sewage. The adopted method was based on synergistic effect resulting from the introduction of a UV radiation pre-disinfection stage of sewage followed by secondary treatment. A pilot unit was installed in the sewage treatment plant of the University of Sao Paulo to simulate the combined system in full-scale operational conditions. Its performance was evaluated through microbiological examinations for determining Escherichia coli, total coliforms and coliphages. The application of UV radiation at 5.1mW/cm(2) for 10 s of exposure in the first disinfection stage was enough to reduce the surviving number of E. coli around 100 times, in comparison to the conventional method. Therefore, based on experimental data, it is possible to conclude that combining treatment and pre-disinfection stage is an effective potential technique to produce effluents with lower degree of contamination by pathogenic organisms.
Resumo:
The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m(3) day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 + 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids, This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ Substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Two horizontal-flow anaerobic immobilized biomass reactors (HAIB) were used to study the degradation of the LAS surfactant: one filled with charcoal (HAIB1) and the other with a mixed bed of expanded clay and polyurethane foam (HAIB2). The reactors were fed with synthetic substrate supplemented with 14 mg l(-1) of LAS, kept at 30 +/- 2 degrees C and operated with a hydraulic retention time (HRT) of 12 h. The surfactant was quantified by HPLC. Spatial variation analyses were done to quantify organic matter and LAS consumption along the reactor length. The presence of the surfactant in the load did not affect the removal of organic matter (COD), which was close to 90% in both reactors for an influent COD of 550 ring l(-1). The results of a mass balance indicated that 28% of all LAS added to HAIB1 was removed by degradation. HAIB2 presented 27% degradation. Molecular biology techniques revealed microorgan isms belonging the uncultured Holophaga sp., uncultured delta Proteobacterium, uncultured Verrucomicrobium sp., Bacteroides sp. and uncultured gamma Proteobacterium sp. The reactor with biomass immobilized on charcoal presented lower adsorption and a higher kinetic degradation coefficient. So, it was the most suitable support for LAS anaerobic treatment. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to assess the anaerobic degradation of black liquor with and without additional carbon sources. Batch experiments were conducted using black liquor, from an integrated pulp and paper mill adding ethanol, methanol and nutrients. The PCR/DGGE technique was used to characterize the structure of the microbial community. The addition of extra sources of carbon did not significantly influence the degradation of black liquor under the conditions evaluated and the microbial community was similar in all experiments. It was observed an increase in some members of the archaeal in reactors that had the best efficiencies for removal of black liquor (around 7.5%). Either ethanol or methanol can be used as co-substrates because the produce the same quantitative and qualitative effect.
Resumo:
Currently diverse industries have high pollution potential because their productive processes generate great volumes of refractory effluents. These effluents are problematic, mainly due to the presence of recalcitrant compounds that are detrimental in wastewater treatment plants using biological systems in their processes. In general, biological treatments do not remove refractory elements. Also, in most cases these compounds can inhibit the yield or are toxic for biota responsible to remove the polluting agents. The Advanced Oxidative Processes (AOPs) represent a technological alternative with a great potential for treatment of no biodegradable effluents. In this paper a review of the use of advanced oxidatives processes: Ozone (O(3)), peroxide of hydrogen (H(2)O(2)) and ultraviolet radiation (UV) is presented applied to the treatment of recalcitrant effluents.
Resumo:
The anaerobic biological treatment of pentachlorophenol (PCP) and methanol as the main carbon source was investigated in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor at 30 +/- 1 degrees C, during a 220-day trial period. The reactor biomass was developed as an attached biofilm on polyurethane foam particles, with 24 h of hydraulic retention time. The PCP concentrations, which ranged from 2.0 to 13.0 mg/L, were controlled by adding synthetic substrate. The HAIB reactor reduced 97% of COD and removed 99% of PCP. The microbial biofilm communities of the HAIB reactor amended with PCP, without previous acclimatization, were characterized by polymerase chain reaction (PCR) and amplified ribosomal DNA restriction analysis (ARDRA) with specific Archaea oligonucleotide primers. The ARDRA technique provided an adequate analysis of the community, revealing the profile of the selected population along the reactor. The biomass activities in the HAIB reactor at the end of the experiments indicated the development of PCP degraders and the maintenance of the population of methanogenic Archaea, ensuring the high efficiency of the system treating PCP with added methanol as the cosubstrate. The use of the simplified ARDRA method enabled us to monitor the microbial population with the addition of high concentrations of toxic compounds and highlighting a selection of microorganisms in the biofilm. (C) 2008 Published by Elsevier Ltd.