57 resultados para US-China BIT
Resumo:
200 GeV corresponding to baryon chemical potentials (mu(B)) between 200 and 20 MeV. Our measurements of the products kappa sigma(2) and S sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long-range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the root s(NN) dependence of kappa sigma(2). From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for mu(B) below 200 MeV.
Resumo:
We report the first three-particle coincidence measurement in pseudorapidity (Delta eta) between a high transverse momentum (p(perpendicular to)) trigger particle and two lower p(perpendicular to) associated particles within azimuth |Delta phi| < 0.7 in root s(NN) = 200 GeV d + Au and Au + Au collisions. Charge ordering properties are exploited to separate the jetlike component and the ridge (long range Delta eta correlation). The results indicate that the correlation of ridge particles are uniform not only with respect to the trigger particle but also between themselves event by event in our measured Delta eta. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jetlike component.
Resumo:
We report a measurement of high-p(T) inclusive pi(0), eta, and direct photon production in p + p and d + Au collisions at root s(NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi(0) -> gamma gamma were detected in the barrel electromagnetic calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross-section measurement by STAR is also presented; the signal was extracted statistically by subtracting the pi(0), eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading-order perturbative QCD calculations.
Resumo:
We report new results on identified (anti) proton and charged pion spectra at large transverse momenta (3 < p(T) < 10 GeV/c) from Cu + Cu collisions at root s(NN) = 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This study explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-p(T) and the anomalous baryon to meson enhancement at intermediate transverse momenta. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au + Au data, and allow for a detailed exploration of the onset of the novel features. Comparative analysis of all available 200 GeV data indicates that the system size is a major factor determining both the magnitude of the hadron spectra suppression at large transverse momenta and the relative baryon to meson enhancement.
Resumo:
We present the results of an elliptic flow, v(2), analysis of Cu + Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at root s(NN) = 62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v(2)(p(T)), is reported for different collision centralities for charged hadrons h(+/-) and strangeness-ontaining hadrons K(S)(0), Lambda, Xi, and phi in the midrapidity region vertical bar eta vertical bar < 1.0. Significant reduction in systematic uncertainty of the measurement due to nonflow effects has been achieved by correlating particles at midrapidity, vertical bar eta vertical bar < 1.0, with those at forward rapidity, 2.5 < vertical bar eta vertical bar < 4.0. We also present azimuthal correlations in p + p collisions at root s = 200 GeV to help in estimating nonflow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au + Au collisions at root s(NN) = 200 GeV. We observe that v(2)(p(T)) of strange hadrons has similar scaling properties as were first observed in Au + Au collisions, that is, (i) at low transverse momenta, p(T) < 2 GeV/c, v(2) scales with transverse kinetic energy, m(T) - m, and (ii) at intermediate p(T), 2 < p(T) < 4 GeV/c, it scales with the number of constituent quarks, n(q.) We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v(2)(p(T)) for K(S)(0) and Lambda. Eccentricity scaled v(2) values, v(2)/epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au + Au collisions, which go further in density, shows that v(2)/epsilon depends on the system size, that is, the number of participants N(part). This indicates that the ideal hydrodynamic limit is not reached in Cu + Cu collisions, presumably because the assumption of thermalization is not attained.
Resumo:
We present a measurement of pi(+)pi(-)pi(+)pi(-) photonuclear production in ultraperipheral Au-Au collisions at root s(NN) = 200 GeV from the STAR experiment. The pi(+)pi(-)pi(+)pi(-) final states are observed at low transverse momentum and are accompanied by mutual nuclear excitation of the beam particles. The strong enhancement of the production cross section at low transverse momentum is consistent with coherent photoproduction. The pi(+)pi(-)pi(+)pi(-) invariant mass spectrum of the coherent events exhibits a broad peak around 1540 +/- 40 MeV/c(2) with a width of 570 +/- 60 MeV/c(2), in agreement with the photoproduction data for the rho(0)(1700). We do not observe a corresponding peak in the pi(+)pi(-) final state and measure an upper limit for the ratio of the branching fractions of the rho(0)(1700) to pi(+)pi(-) and pi(+)pi(-)pi(+)pi(-) of 2.5% at 90% confidence level. The ratio of rho(0)(1700) and rho(0)(770) coherent production cross sections is measured to be 13.4 +/- 0.8(stat.) +/- 4.4(syst.)%.
Resumo:
We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au + Au collisions below the nominal injection energy at the BNL Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance solenoidal tracker at RHIC (STAR) detector at root s(NN) = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density dN/dy in rapidity y, average transverse momentum < p(T)>, particle ratios, elliptic flow, and Hanbury-Brown-Twiss (HBT) radii are consistent with the corresponding results at similar root s(NN) from fixed-target experiments. Directed flow measurements are presented for both midrapidity and forward-rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, < p(T)>, and particle ratios are discussed. These results also demonstrate that the capabilities of the STAR detector, although optimized for root s(NN) = 200 GeV, are suitable for the proposed QCD critical-point search and exploration of the QCD phase diagram at RHIC.
Resumo:
Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au + Au and p + p collisions at root s(NN) = 200 GeV. Strong short- and long-range correlations (LRC) are seen in central Au + Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short-range correlations are observed in peripheral Au + Au collisions. Both the dual parton model (DPM) and the color glass condensate (CGC) predict the existence of the long-range correlations. In the DPM, the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC, longitudinal color flux tubes generate the LRC. The data are in qualitative agreement with the predictions of the DPM and indicate the presence of multiple parton interactions.
Resumo:
The results of midrapidity (0 < y < 0.8) neutral pion spectra over an extended transverse momentum range (1 < p(T) < 12 GeV/c) in root s(NN) = 200 GeV Au + Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter or by the Time Projection Chamber via tracking of conversion electron-positron pairs. Our measurements are compared to previously published pi(+/-) and pi(0) results. The nuclear modification factors R(CP) and R(AA) of pi(0) are also presented as a function of p(T). In the most central Au + Au collisions, the binary collision scaled pi(0) yield at high p(T) is suppressed by a factor of about 5 compared to the expectation from the yield of p + p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at the Relativistic Heavy Ion Collider.
Resumo:
The STAR Collaboration at the Relativistic Heavy Ion Collider presents measurements of J/psi e(+) e(-) at midrapidity and high transverse momentum (pT > 5 GeV/c) in p + p and central Cu + Cu collisions at root s(NN) = 200 GeV. The inclusive J/psi production cross section for Cu + Cu collisions is found to be consistent at high p(T) with the binary collision-scaled cross section for p + p collisions. At a confidence level of 97%, this is in contrast to a suppression of J/psi production observed at lower p(T). Azimuthal correlations of J/psi with charged hadrons in p + p collisions provide an estimate of the contribution of B-hadron decays to J/psi production of 13% +/- 5%.
Resumo:
We present a systematic analysis of two-pion interferometry in Au+Au collisions at s(NN)=62.4 GeV and Cu+Cu collisions at s(NN)=62.4 and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The multiplicity and transverse momentum dependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy.
Resumo:
The STAR Collaboration at the BNL Relativistic Heavy Ion Collider has measured two-pion correlation functions from p + p collisions at root s = 200 GeV. Spatial scales are extracted via a femtoscopic analysis of the correlations, though this analysis is complicated by the presence of strong nonfemtoscopic effects. Our results are put into the context of the world data set of femtoscopy in hadron-hadron collisions. We present the first direct comparison of femtoscopy in p + p and heavy ion collisions, under identical analysis and detector conditions.
Resumo:
In this article, we discuss school schedules and their implications in the context of chronobiological contemporary knowledge, arguing for the need to reconsider time planning in the school setting. We present anecdotal observations regarding chronobiological challenges imposed by the school system throughout different ages and discuss the effects of these schedules in terms of sleepiness and its deleterious consequences on learning, memory, and attention. Different settings (including urban vs. rural habitats) influence timing, which also depends on self-selected sleep schedules. Finally, we criticize the traditional view of a necessary strict stability of sleep-wake habits.
Resumo:
The water-wind crisscross region of the Loess Plateau in China is comprised of 17.8 million hectares of highly erodible soil under limited annual rainfall. This requires a sustainable water balance for the restoration of dryland ecosystems to reduce and manage soil erosion. In this region, alfalfa has been one of the main legumes grown to minimize soil erosion. However, alfalfa yields were significantly lower in years of reduced rainfall suggesting that high water use and deep rooting alfalfa make it an unsustainable crop due to the long-term decline in soil water storage and productivity. Our objectives in this Study were to evaluate the soil water balance of Loess Plateau soils during vegetative restoration and to evaluate practices that prevent soil desiccation and promote ecosystem restoration and sustainability. Field observations of soil moisture recovery and soil erosion were carried out for five years after alfalfa was replaced with different crops and with bare soil. Soil water content changes in cropland, rangeland, and bare soil were tracked over several years, using a water balance approach. Results indicate that growing forages significantly reduced runoff and sediment transport. A forage-food-crop rotation is a better choice than other cropping systems for achieving sustainable productivity and preventing soil erosion and desiccation. However, economic considerations have prevented its widespread adoption by local farmers. Alternatively, this study recommends consideration of grassland crops or forest ecosystems to provide a sustainable water balance in the Loess Plateau of China. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Long-term vegetation restoration carried out on the slopes of the Loess Plateau of China employed different spatial and temporal land-use patterns but very little is known about the effects of these patterns on soil water-content variability. For this study the small Donggou catchment was selected to investigate soil water-content distributions for three spatial scales, including the entire catchment area, sampling transects, and land-use systems. Gravimetric soil water contents were determined incrementally to a soil depth of 1.20 m, on 10 occasions from April to October, 2007, at approximately 20-day intervals. Results indicated that soil water contents were affected by the six land-use types, resulting in four distinct patterns of vertical distribution of soil moisture (uniform, increasing, decreasing, and fluctuating with soil depth). The soil water content and its variation were also influenced in a complex manner by five land-use patterns distributed along transects following the gradients of five similar slopes. These patterns with contrasting hydrological responses in different components, such as forage land (alfalfa)-cropland-shrubland or shrubland-grassland (bunge needlegrass)-cropland-grassland, showed the highest soil water-content variability. Soil water at the catchment scale exhibited a moderate variability for each measurement date, and the variability of soil water content decreased exponentially with increasing soil water content. The minimum sample size for accurate data for use in a hydrological model for the catchment, for example, required many more samples for drier (69) than for wet (10) conditions. To enhance erosion and runoff control, this study suggested two strategies for land management: (i) to create a mosaic pattern by land-use arrangement that located units with higher infiltration capacities downslope from those with lower soil infiltrabilities; and (ii) raising the soil-infiltration capacity of units within the spatial mosaic pattern where possible.