44 resultados para Tumeur du cortex surrénalien


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ventral portion of the medial prefrontal cortex comprises the prelimbic cortex (PL) and the infralimbic cortex (IL). Several studies have indicated that both the PL and the IL play an important role in cardiovascular control. Chemoreflex activation by systemic administration of potassium cyanide (KCN) evokes pressor and bradycardiac responses in conscious rats, in addition to an increase in respiratory frequency. We report here a comparison between the effects of pharmacological inhibition of PL and IL neurotransmission on blood pressure and heart rate responses evoked by chemoreflex activation using KCN (i.v.) in conscious rats. Bilateral microinjection of 200 nl of the unspecific synaptic blocker CoCl(2) (1 mm) into the PL evoked a significant attenuation of the pressor response, without affecting the chemoreflex-induced heart rate decrease. However, IL local synapse inhibition evoked no changes in cardiovascular responses induced by chemoreflex activation. Thus, our results suggest that the pressor but not the bradycardiac response to chemoreflex activation is, at least in part, mediated by local neurotransmission present in the PL cortex, without influence of the IL cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported that L-glutamate (L-glu) injected into the ventral portion of medial prefrontal cortex (vMPFC) of unanesthetized normotensive Wistar rats elicited cardiovascular responses. In the present study we investigated whether the spontaneously hypertensive rat (SHR) exhibit abnormal cardiovascular responses after L-glu microinjection in the vMPFC. Microinjections of L-glu (3, 9, 27, 81 or 150 nmol/200 nl) caused long-lasting dose-related depressor and bradycardiac responses in unanesthetized SHR (n = 6, each dose). Pressor and tachycardiac responses were evoked after the injection of 81 nmol of L-glu in the vMPFC of normotensive Wistar rats (n=6). Systemic pretreatment with the betal-adrenoceptor antagonist atenolol (1.5 mg/kg, i.v.) had no effect on L-glu cardiovascular responses evoked in the SHR (n=5). However, the treatment with the muscarinic antagonist homatropine methyl bromide (I mg/kg, i.v.) blocked the bradycardiac response to L-glu, without significant effects on depressor response evoked by L-glu in the SHR (n = 5). These results indicate that the bradycardiac response to the injection of L-glu injection in the vMPFC is due to activation of the parasympathetic system and not to inhibition of the cardiac sympathetic input. In conclusion, results indicate opposite cardiovascular responses when L-glu was microinjected in the vMPFC of unanesthetized SHR or normotensive. The bradycardiac response observed in the SHR was due to parasympathetic activation and was not affected by pharmacological blockade of the cardiac sympathetic output. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reversible inactivation of the ventral portion of medial prefrontal cortex (vMPFC) of the rat brain has been shown to induce anxiolytic-like effects in animal models based on associative learning. The role of this brain region in situations involving innate fear, however, is still poorly understood, with several contradictory results in the literature. The objective of the present work was to verify in male Wistar rats the effects of vMPFC administration of cobalt chloride (CoCl(2)), a selective inhibitor of synaptic activity, in rats submitted to two models based on innate fear, the elevated plus-maze (EPM) and light-dark box (LOB), comparing the results with those obtained in two models involving associative learning, the contextual fear conditioning (CFC) and Vogel conflict (VCT) tests. The results showed that, whereas CoCl(2) induced anxiolytic-like effects in the CFC and VCT tests, it enhanced anxiety in rats submitted to the EPM and LOB. Together these results indicate that the vMPFC plays an important but complex role in the modulation of defensive-related behaviors, which seems to depend on the nature of the anxiety/fear inducing stimuli. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ventral medial prefrontal cortex (vMPFC) has direct connections to subcortical, diencephalic and brainstem structures that have been closely related to depression. However, studies aimed at investigating the role of the vMPFC in the neurobiology of depression have produced contradictory results. Moreover, the precise involvement of vMPFC anatomic subdivisions, the prelimbic(PL) and the infralimbic (IL) cortices, in regulating depressive-like behavior have been poorly investigated. The forced swimming test (FST) is a widely employed animal model aimed at detecting antidepressant-like effects. Therefore, to further investigate a possible involvement of the vMFPC in depressive-like behavior, rats bilaterally implanted with cannulae aimed at the PL or IL prefrontal cortices were submitted to 15 min of forced swimming (pre-test) followed, 24 h later, by a 5-min swimming session (test), where immobility time was registered. Synaptic transmission in these regions was temporarily inhibited using local microinjection of cobalt chloride at different periods of the experimental procedure (before or after the pre-test or before the test). PL inactivation decreased immobility time independently of the time of the injection. In the IL inactivation induced a significant antidepressant-like effect when performed immediately before the pre-test or before the test, but not after the pre-test. These results suggest that activation of the vMPFC is important for the behavioral changes observed in rats submitted to the FST. They further indicate that, although both the PL and IL cortices are involved in these effects, they may play different roles. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ventral portion of the medial prefrontal cortex (vMPFC) has been related to the expression of contextual fear conditioning. This study investigated the possible involvement of CB(1) receptors in this aversive response. Male Wistar rats were submitted to a contextual aversive conditioning session and 48 h later re-exposed to the aversive context in which freezing and cardiovascular responses (increase of arterial pressure and heart rate) were recorded. The expression of CB(1) receptor-mRNA in the vMPFC was also measured using real time-PCR. In the first experiment intra-vMPFC administration of the CB(1) receptor agonist anandamide (AEA, 5 pmol/200 nl) or the AEA transport inhibitor AM404 (50 pmol/200 nl) prior to re-exposure to the aversive context attenuated the fear-conditioned responses. These effects were prevented by local pretreatment with the CB(1) receptor antagonist AM251 (100 pmol/200 nl). Using the same conditioning protocol in another animal group, we observed that CB(1) receptor mRNA expression increased in the vMPFC 48 h after the conditioning session. Although AM251 did not cause any effect by itself in the first experiment, this drug facilitated freezing and cardiovascular responses when the conditioning session employed a lesser aversive condition. These results indicated that facilitation of cannabinoid-mediated neurotransmission in the vMPFC by local CB(1) receptor activation attenuates the expression of contextual fear responses. Together they suggest that local endocannabinoid-mediated neurotransmission in the vMPFC can modulate these responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute restraint is an unavoidable stress situation that evokes marked and sustained cardiovascular changes, which are characterized by blood pressure and heart rate increases. In the present study, we tested the hypothesis that insular cortex mediates cardiovascular responses to acute restraint stress in rats. To that purpose, the insular cortex synaptic transmission was inhibited by bilateral microinjection of the nonselective synaptic blocker cobalt chloride (CoCl(2), 1 mM/100 nL). Insular cortex pretreatment with CoCl(2) decreased restraint-evoked pressor and tachycardiac responses, thus indicating an involvement of synapses within the insular cortex on the modulation of cardiovascular responses to restraint stress. The present results indicate that insular cortex synapses exert a facilitatory influence on blood pressure and HR increase evoked by acute restraint stress in rats. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: Systemic administration of cannabidiol (CBD), a non-psychotomimetic component of Cannabis sativa, is able to attenuate cardiovascular and behavioral (freezing) changes induced by re-exposure to a context that had been previously paired with footshocks. The brain sites mediating this effect, however, remain unknown. The medial prefrontal cortex (mPFC) has been related to contextual fear conditioning. Objectives: (1) To verify, using c-Fos immunocytochemistry, if the mPFC is involved in the attenuation of contextual fear induced by systemic administration of CBD; (2) to investigate if direct microinjections of CBD into mPFC regions would also attenuate contextual fear. Results: Confirming previous results systemic administration of CBD (10 mg/kg) decreased contextual fear and associated c-Fos expression in the prefrontal cortex (prelimbic and infralimbic regions). The drug also attenuated c-Fos expression in the bed nucleus of the stria terminalis (BNST). Direct CBD (30 nmol) microinjection into the PL prefrontal cortex reduced freezing induced by re-exposure to the aversively conditioned context. In the infralimbic (IL) prefrontal cortex, however, CBD (30 nmol) produced an opposite result, increasing the expression of contextual fear conditioning. This result was confirmed by an additional experiment where the conditioning session was performed under a less aversive protocol. Conclusion: These results suggest that the PL prefrontal cortex may be involved in the attenuation of contextual fear induced by systemic injection of CBD. They also support the proposition that the IL and PL play opposite roles in fear conditioning. A possible involvement of the BNST in CBD effects needs to be further investigated. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insular cortex (IC) has been reported to modulate the cardiac parasympathetic activity of the baroreflex in unanesthetized rats. However, which neurotransmitters are involved in this modulation is still unclear. In the present study, we evaluated the possible involvement of local IC-noradrenergic neurotransmission in modulating reflex bradycardiac responses. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL), into the IC of male Wistar rats, increased the gain of reflex bradycardia in response to mean arterial pressure (MAP) increases evoked by intravenous infusion of phenylephrine. However, bilateral microinjection of equimolar doses of either the selective alpha(2)-adrenoceptor antagonist RX821002 or the non-selective beta-adrenoceptor antagonist propranolol into the IC did not affect the baroreflex response. No effects were observed in basal MAP or heart rate values after bilateral microinjection of noradrenergic antagonists into the IC, thus suggesting no tonic influence of IC-noradrenergic neurotransmission on resting cardiovascular parameters. In conclusion, these data provide evidence that local IC-noradrenergic neurotransmission has an inhibitory influence on baroreflex responses to blood pressure increase evoked by phenylephrine infusion through activation of alpha(1)-adrenoceptors. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endocannabinoid anandamide, in addition to activating cannabinoid type 1 receptors (CB1), may act as an agonist at transient receptor potential vanilloid type 1 (TRPV1) channels. In the periaqueductal gray, CB1 activation inhibits, whereas TRPV1 increases, anxiety-like behavior. In the medial prefrontal cortex (mPFC), another brain region related to defensive responses, CB1 activation induces anxiolytic-like effects. However, a possible involvement of TRPV1 is still unclear. In the present study, we tested the hypothesis that TRPV1 channel contributes to the modulation of anxiety-like behavior in the mPFC. Male Wistar rats (n = 5-7 per group) received microinjections of the TRPV1 antagonist capsazepine (1-60 nmol) in the ventral portion of the mPFC and were exposed to the elevated plus maze (EPM) or to the Vogel conflict test. Capsazepine increased exploration of open arms in the EPM as well as the number of punished licks in the Vogel conflict test, suggesting anxiolytic-like effects. No changes in the number of entries into the enclosed arms were observed in the EPM, indicating that there were no changes in motor activity. Moreover, capsazepine did not interfere with water consumption or nociceptive threshold, discarding potential confounding factors for the Vogel conflict test. These data suggest that TRPV1 in the ventral mPFC tonically inhibits anxiety-like behavior. TRPV1 could facilitate defensive responses opposing, therefore, the anxiolytic-like effects reported after local activation of CB1 receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tonic immobility (TI) is an innate defensive behaviour elicited by physical restriction and Postural inversion, and is characterised by a profound and temporary state of akinesis. Our previous studies demonstrated that glutamatergic stimulation of the dorsomedial/dorsolateral Portion of periaqueductal gray matter (dPAG) decreases the duration of TI in guinea pigs (Cavia porcellus). Furthermore, evidence suggests that the anterior cingulate cortex (ACC) constitutes an important Source of glutamate for the dPAG. Hence, in the current study, we investigated the effects of microinjection of the excitatory amino acid (EAA) agonist DL-homocysteic acid (DLH) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 into the ACC on the duration of TI in guinea pigs. We also assessed the effect of the NMDA receptor antagonist (MK-801) into the dorsal periaqueductal gray matter (dPAG) prior to DLH microinjection into the ACC on the TI duration in the guinea pig. Our results demonstrated that DLH microinjections into the ACC decreased the duration of TI. This effect was blocked by previous MK-801 microinjections into the ACC or into the dPAG. The MK-801 microinjections alone did not influence TI duration. These results provide the new insight that EAAs in the ACC can decrease the duration of TI. The mechanism seems to be dependent on the NMDA receptors present in the ACC and in the dPAG. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional MRI (fMRI) data often have low signal-to-noise-ratio (SNR) and are contaminated by strong interference from other physiological sources. A promising tool for extracting signals, even under low SNR conditions, is blind source separation (BSS), or independent component analysis (ICA). BSS is based on the assumption that the detected signals are a mixture of a number of independent source signals that are linearly combined via an unknown mixing matrix. BSS seeks to determine the mixing matrix to recover the source signals based on principles of statistical independence. In most cases, extraction of all sources is unnecessary; instead, a priori information can be applied to extract only the signal of interest. Herein we propose an algorithm based on a variation of ICA, called Dependent Component Analysis (DCA), where the signal of interest is extracted using a time delay obtained from an autocorrelation analysis. We applied such method to inspect functional Magnetic Resonance Imaging (fMRI) data, aiming to find the hemodynamic response that follows neuronal activation from an auditory stimulation, in human subjects. The method localized a significant signal modulation in cortical regions corresponding to the primary auditory cortex. The results obtained by DCA were also compared to those of the General Linear Model (GLM), which is the most widely used method to analyze fMRI datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives To compare the biomechanical characteristics of 2 arthrodesis techniques for the equine proximal interphalangeal joint (PIP) using either a 3-hole 4.5 mm locking compression plate (LCP) or 3-hole 4.5 mm narrow dynamic compression plate (DCP), both with 2 transarticular 5.5 mm cortex screws. Study Design Experimental. Sample Population Cadaveric adult equine forelimbs (*n=6 pairs). Methods For each forelimb pair, 1 limb was randomly assigned to 1 of 2 treatment groups and the contralateral limb by default to the other treatment group. Construct stiffness, gap formation across the PIP joint, and rotation about the PIP joint were determined for each construct before cyclic axial loading and after each of four, 5000 cycle loading regimens. After the 20,000 cycle axial loading regimen, each construct was loaded to failure. Results There were no significant differences in construct stiffness, gap formation, or sagittal plane rotation between the LCP and DCP treatment groups at any of the measured time points. Conclusion Biomechanically, fixation of the equine PIP joint with a 3-hole 4.5 mm LCP is equivalent to fixation with a 3-hole 4.5 mm narrow DCP under the test conditions used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate behavioural changes in Holstein heifers caused by exogenous adrenocorticotropic hormone (ACTH) administration. Twelve 11-month-old heifers were submitted to either a single saline or ACTH injection and then the treatments were switched after 3 days (n = 12 heifers/treatment). Heifers were in full view throughout the experimental period and recordings started immediately after ACTH and saline administration (injection corresponded to time 0 min), with general activity patterns of each heifer recorded on videotape for 24 h. Behavioural results during the first two experimental hours showed that heifers were less active and spent more time lying following ACTH than after saline treatment (P = 0.04). Also, heifers spent significantly less time ruminating immediately following ACTH injection (P = 0.05). However, feed intake measured after 4 and 24 h was similar between treatments (P > 0.05). Overall, there was no significant influence of ACTH treatment on frequency or duration of behaviours during the 4- and 24-h periods following injection (P > 0.05). The rapid and minimal effect of ACTH injection on behaviour suggests that peripheral administration of ACTH can be used to measure reactivity of the adrenal cortex without inducing biologically significant consequences. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prefrontal cortex is continuously required for working memory processing during wakefulness, but is particularly hypoactivated during sleep and in psychiatric disorders such as schizophrenia. Ammon`s horn CA1 hippocampus subfield (CA1) afferents provide a functional modulatory path that is subjected to synaptic plasticity and a prominent monoaminergic influence. However, little is known about the muscarinic cholinergic effects on prefrontal synapses. Here, we investigated the effects of the muscarinic agonist, pilocarpine (PILO), on the induction and maintenance of CA1-medial prefrontal cortex (mPFC) long-term potentiation (LTP) as well as on brain monoamine levels. Field evoked responses were recorded in urethane-anesthetized rats during baseline (50 min) and after LTP (130 min), and compared with controls. LTP was induced 20 min after PILO administration (15 mg/kg, i.p.) or vehicle (NaCl 0.15 M, i.p.). In a separate group of animals, the hippocampus and mPFC were microdissected 20 min after PILO injection and used to quantify monoamine levels. Our results show that PILO potentiates the late-phase of mPFC UP without affecting either post-tetanic potentiation or early LTP (20 min). This effect was correlated with a significant decrease in relative delta (1-4 Hz) power and an increase in sigma (10-15 Hz) and gamma (2540 Hz) powers in CA1. Monoamine levels were specifically altered in the mPFC. We observed a decrease in dopamine, 5-HT, 5-hydroxyindolacetic acid and noradrenaline levels, with no changes in 3,4-hydroxyphenylacetic acid levels. Our data, therefore, suggest that muscarinic activation exerts a boosting effect on mPFC synaptic plasticity and possibly on mPFC-dependent memories, associated to monoaminergic changes. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.