212 resultados para Thromboxane synthase
Resumo:
Nitric oxide (NO) exerts important physiological and pathological roles in humans. The study of NO requires the immunolocalization of its synthesizing enzymes, neuronal, endothelial and inducible NO synthases (NOS). NOS are labile to formalin-fixation and paraffin-embedding, which are used to prepare human archival tissues. This lability has made NOS immunohistochemical studies difficult, and a detailed protocol is not yet available. We describe here a protocol for the immunolocalization of NOS isoforms in human archival cerebellum and non-nervous tissues, and in rat tissues and cultured cells. Neuronal NOS antigenicity in human archival and rat nervous tissue sections was microwave-retrieved in 50 mM Tris-HCl buffer, pH 9.5, for 20 min at 900W. Neuronal NOS was expressed in stellate, basket, Purkinje and granule cells in human and rat cerebellum. Archival and frozen human cerebellar sections showed the same neuronal NOS staining pattern. Archival cerebellar sections not subjected to antigen retrieval stained weakly. Antigenicity of inducible NOS in human lung was best retrieved in 10 mM sodium citrate buffer, pH 6.0, for 15 min at 900W. Inflammatory cells in a human lung tuberculoma were strongly stained by anti-inducible NOS antibody. Anti-endothelial NOS strongly stained kidney glomeruli. Cultured PC12 cells were strongly stained by anti-neuronal NOS without antigen retrieving. The present immunohistochemistry protocol is easy to perform, timeless, and suitable for the localization of NOS isoforms in nervous and non-nervous tissues, in human archival and rat tissues. It has been extensively used in our laboratory, and is also appropriate for other antigens. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
While endogenous nitric oxide (NO) may be relevant to the beneficial hemodynamic effects produced by sildenafil during acute pulmonary embolism (APE), huge amounts of inducible NO synthase (iNOS)derived NO may contribute to lung injury. We hypothesized that iNOS inhibition with S-methylisothiourea could attenuate APE-induced increases in oxidative stress and pulmonary hypertension and, therefore, could improve the beneficial hemodynamic and antioxidant effects produced by sildenafil during APE. Hemodynamic evaluations were performed in non-embolized dogs treated with saline (n = 4), S-methylisothiourea (0.01 mg/kg followed by 0.5 mg/kg/h, n = 4), sildenafil (0.3 mg/kg, n = 4), or S-methylisothiourea followed by sildenafil (n = 4), and in dogs that received the same drugs and were embolized with silicon microspheres (n = 8 for each group). Plasma nitrite/nitrate (NOx) and thiobarbituric acid reactive substances (TBARS) concentrations were determined by Griess and a fluorometric assay, respectively. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 25 +/- 1.7 mm Hg and by 941 +/- 34 dyn s cm(-5) m(-2), respectively. S-methylisothiourea neither attenuated APE-induced pulmonary hypertension, nor enhanced the beneficial hemodynamic effects produced by sildenafil after APE (>50% reduction in pulmonary vascular resistance). While sildenafil produced no change in plasma NOx concentrations, S-methylisothiourea alone or combined with sildenafil blunted APE-induced increases in NOx concentrations. Both drugs, either alone or combined, produced antioxidant effects. In conclusion, although iNOS-derived NO may play a key role in APE-induced oxidative stress, our results suggest that the iNOS inhibitor S-methylisothiourea neither attenuates APE-induced pulmonary hypertension, nor enhances the beneficial hemodynamic effects produced by sildenafil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The present study was conducted to determine the affect of pre-treating of oocytes and/or sperm with a rabbit polyclonal antibody against recombinant cattle lipocalin type prostaglandin D synthase (alpha L-PGDS) on in vitro sperm-oocyte binding and fertilization. In vitro matured cattle oocytes were incubated (39 degrees C, 5% CO2 in air) for I It in the following treatments either 500 mu L of fertilization medium (FM) or FM with alpha L-PGDS (1:2000). Frozen-thawed spermatozoa were washed by a 45/90% layered Percoll gradient centrifugation and incubated for I h either FM or FM with a L-PGDS. This study utilized five different treatments: (1) no antibody (control); (2) a rabbit IgG against a non-bovine antigen, bacterial histidase (alpha-hist); (3) a L-PGDS at fertilization time (with fertilization medium); (4) alpha L-PGDS-treated oocytes; or (5) a L-PGDS-treated sperm. Pre-treated oocytes were incubated with 10 X 10(4) washed spermatozoa per 25 oocytes. Oocytes used to assess sperm binding were stained with Hoescht 33342, and the number of sperm bound per zonae pellucidae counted. The remaining oocytes were fixed in acid alcohol, stained with 1% acetate-orcein and observed to determine the presence of pronuclei. More sperm bound to the zonae pellucidae when oocytes and/or sperm were pre-treated with alpha. L-PGDS: (1) 26.4 +/- 3.0; (2) 25.6 +/- 3.0; (3) 59.7 +/- 3.0; (4) 56.4 +/- 3.0; and (5) 57.1 +/- 3.0. Addition of alpha L-PGDS with sperm, oocytes, or both, decreased fertilization (P < 0.05) compared with the control: (1) 89.2 +/- 2.0%; (2) 87.5 +/- 2.0%; (3) 19.4 +/- 2.0%; (4) 27.2 +/- 3.1%; and (5) 14.1 +/- 3.4%. The alpha L-PGDS reacts with both oocytes and spermatozoa, resulting in increases of in vitro sperm-oocyte binding and inhibition of fertilization. These observations suggest that L-PGDS may have a role in cattle fertilization. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Paracoccidioidomycosis, the major systemic mycosis in Latin America, is caused by fungus Paracoccidioides brasiliensis. To analyze the influence of inducible nitric oxide synthase (iNOS) in this disease, iNOS-deficient (iNOS(-/-)) and wild-type (WT) mice were infected intravenously with P. brasiliensis 18 isolate. We found that, unlike WT mice, iNOS(-/-) mice did not control fungal proliferation, and began to succumb to infection by day 50 after inoculation of yeast cells. Typical inflammatory granulomas were found in WT mice, while, iNOS(-/-) mice presented incipient granulomas with intense inflammatory process and necrosis. Additionally, splenocytes from iNOS(-/-) mice did not produce nitric oxide, however, their proliferative response to Con-A was impaired, just like infected WT mice. Moreover, infected iNOS(-/-) mice presented a mixed pattern of immune response, releasing high levels of both Th1 (IL-12, IFN-gamma and TNF-alpha) and Th2 (IL-4 and IL-10) cytokines. These data suggest that the enzyme iNOS is a resistance factor during paracoccidioidomycosis by controlling fungal proliferation, by influencing cytokines production, and by appeasing the development of a high inflammatory response and consequently formation of necrosis. However, iNOS-derived nitric oxide seems not being the unique factor responsible for immunosuppression observed in infections caused by P. brasiliensis. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
To better understand the role of nitric oxide (NO) in mammal development, specifically in the transition of the fetal stages at birth, we studied the timing of cell-specific expression of inducible NO synthase (iNOS) isoform during gestational periods of rats, mainly at the late stages of intra-uterine development. Before experimentation, the samples were collected (from 17th to 21st gestational days), fixed in 10% buffered formalin and embedded in paraffin for histological procedures. Hereafter, the sections (5 mu m thickness) obtained from different embryos were immunostained by avidin-biotin-immunoperoxidase technique, by using antibody against iNOS isoform. The most of cell immunopositive was suggestive of granulocyte-like cells and those cells were resident close to the blood vessels in different organs, such as: lung, liver or bone marrow environment. Sometimes we noted immunopositive cells in the blood flow, as reported in the thymus. In agreement, iNOS expression, obtained by western blotting analysis, showed the same profile. Together, our data shows that iNOS expression increased gradually during the late stages of rat development (from E17 to E21) and it was executed by cells close to blood vessels. Thus, we can clearly to predict that this expression was finely modulated and it contributes for time-line dependent NO production during rat late development.
Resumo:
Studies investigating the immunopathological aspects of Jorge Lobo`s disease have shown that the inflammatory infiltrate consists mainly of histiocytes and multinucleated giant cells involving numerous yeast-like cells of Lacazia loboi, with the T lymphocytes more common than B lymphocytes and plasma cells. The quantification of cytokines in peripheral blood mononuclear cells culture supernatant has revealed alterations in the cytokines profile, characterized by predominance of a Th2 profile. In view of these findings and of the role of cytokines in cell interactions, the objective of the present study was to investigate the presence of the cytokines IL-10, TGF-ss 1 and TNF-alpha, as well as iNOS enzyme in granulomas induced by L. loboi. Histological sections obtained from skin lesions of 16 patients were analyzed by immunohistochemistry for the presence of these cytokines and iNOS. The results showed that TGF-ss 1 was the cytokine most frequently expressed by cells present in the inflammatory infiltrate, followed by IL-10. There was a minimum to discrete positivity of cells expressing TNF-alpha and iNOS. The results suggest that the presence of immunosuppressive cytokines in skin lesions of patients with the mycosis might be responsible for the lack of containment of the pathogen as demonstrated by the presence of numerous fungi in the granuloma.
Resumo:
Introduction: Cognitive and attentional deficits in schizophrenia include impairment of the sensorimotor filter as measured by prepulse inhibition (PPI). In this way, the study of animals that naturally present low PPI responses could be a useful approach for screening new antipsychotic drugs. Several pieces of evidence suggest that dopamine and nitric oxide (NO) can modulate PPI but their role in those animals is unknown. Objectives: The aim of this study was to investigate the role of dopamine and NO in Wistar rats with naturally low PPI response. Methods: Male Wistar rats with low PPI responses received an i.p. injection of the antipsychotics haloperidol (0.1, 0.3 or 1 mg/kg) or clozapine (0.5, 1.5 or 5 mg/kg), the anxiolytic diazepam (1 or 3 mg/kg) or the NO synthase (NOS) inhibitors, N(G)- nitro-L-arginine (L-NOARG; 40 mg/kg, acutely or sub-chronically) or 7-Nitroindazole (7-NI; 3, 10 or 30 mg/kg). All animals were submitted to the PPI test 1 h after injection. Striatal and cortical dopamine, DOPAC, and noradrenaline levels of rats with low PPI responses were compared to rats with normal PPI responses. Results: We found increased levels of catecholamines on the striatum and prefrontal cortex of Wistar rats with low PPI. In these animals, both antipsychotics, typical and atypical, and NOS inhibitors significantly increased PPI. Conclusion: Taken together, our findings suggest that the low PPI phenotype may be driven by an over-active catecholamine system. Additionally, our results corroborate the hypothesis of dopamine and NO interaction on PPI modulation and suggest that Wistar rats with low PPI may represent an interesting non-pharmacological model to evaluate new potential antipsychotics. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The weaver mouse represents the only genetic animal model of gradual nigrostriatal dopaminergic neurodegeneration which is proposed as a pathophysiological phenotype of Parkinson`s disease. The aim of the present study was to analyze the nitric oxide and dopaminergic systems in selected brain regions of homozygous weaver mice at different postnatal ages corresponding to specific stages of the dopamine loss. Structural deficits were evaluated by quantification of tyrosine hydroxylase and neuronal nitric oxide synthase-immunostaining in the cortex, striatum, accumbens nuclei, subthalamic nuclei, ventral tegmental area, and substantia nigra compacta of 10-day, 1- and 2-month-old wildtype and weaver mutant mice. The results confirmed the progressive loss of dopamine during the postnatal development in the adult weaver mainly affecting the substantia nigra pars compacta, striatum, and subthalamic nucleus and slightly affecting the accumbens nuclei and ventral tegmental area. A general decrease in neuronal nitric oxide synthase-immunostaining with age was revealed in both the weaver and wild-type mice, with the decrease being most pronounced in the weaver. In contrast, there was an increase in the substantia nigra pars compacta nitric oxide synthase-immunostaining and a decrease mainly in the subthalamic and accumbens nuclei of the 2-month-old weaver mutant. The decrease in the expression of nNOS may bear functional significance related to the process of aging. DA neurons from the substantia nigra directly modulate the activity of subthalamic nucleus neurons, and their loss may contribute to the abnormal activity of subthalamic nucleus neurons. Although the functional significance of these changes is not clear, it may represent plastic compensating adjustments resulting from the loss of dopamine innervation, highlighting a possible role of nitric oxide in this process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Chronic L-DOPA pharmacotherapy in Parkinson`s disease is often, accompanied by the development of abnormal and excessive movements known as L-DOPA-induced dyskinesia. Rats with 6-hydroxydopamine lesion of dopaminergic neurons chronically treated with L-DOPA develop a rodent analog of this dyskinesia characterized by severe axial, limb, locomotor and orofacial abnormal involuntary movements. While the mechanisms by which these effects occur are not clear, they may involve the nitric oxide system. In the present study we investigate if nitric oxide synthase inhibitors can prevent dyskinesias induced by repeated administration Of L-DOPA in rats with unilateral 6-hydroxydopamine lesion. Chronic L-DOPA (high fixed dose, 100 mg/kg; low escalating dose, 10-30 mg/kg) treatment induced progressive dyskinesia changes. Two nitric oxide synthase inhibitors, 7-nitroindazole (1-30 mg/kg) and NG-nitro-L-arginine (50 mg/kg), given 30 min before L-DOPA, attenuate dyskinesia. 7-Nitroindazolee also improved motor performance of these animals in the rota-rod test. These results suggest the possibility that nitric oxide synthase inhibitors may be useful to treat L-DOPA.-Induced dyskinesia. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
There is evidence that nitric oxide plays a role in the neurotransmitter balance within the basal ganglia and in the pathology of Parkinson`s disease. In the present work we investigated in striatal 6-hydroxydopamine (6-OHDA) lesioned rats the effects of a nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG), given systemically on both the dopaminergic (DA) neuronal loss and the neuronal NOS cell density. We analyzed the DA neuronal loss through tyrosine hydroxylase immunohistochemistry (TH). The nitrergic system was evaluated using an antibody against the neuronal NOS (nNOS) isoform. Treatment with the L-NOARG significantly reduced 6-OHDA-induced dopaminergic damage in the dorsal striatum, ventral substantia nigra and lateral globus pallidus, but had no effects in the dorsal substantia nigra and in the cingulate cortex. Furthermore, L-NOARG reduced 6-OHDA-induced striatal increase, and substantia nigra compacta decrease, in the density of neuronal nitric oxide synthase positive cells. These results suggest that nitric oxide synthase inhibition may decrease the toxic effects of 6-OHDA on dopaminergic terminals and on dopamine cell bodies in sub-regions of the SN and on neuronal nitric oxide synthase cell density in the rat brain. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nitric oxide synthase (NOS) has been reported to be involved with both bone healing and bone metabolism. The aim of this study was to test the null hypothesis that there is no correlation between new bone formation during mandibular distraction osteogenesis and NOS expression in the trigeminal ganglion of rats. Newly formed tissue during distraction osteogenesis and trigeminal NOS expression measured by the NADPH-diaphorase (NADPH-d) reaction were evaluated in 72 male Wistar rats by histomorphometric and histochemical methods. In animals submitted to 0.5 mm/day distraction osteogenesis, the percentage of bone tissue was higher in the basal area of the mandibles compared with the center and significantly increased through the experimental periods (P < 0.05). At the sixth postoperative week, the difference in bone formation between the continuous and acute distraction osteogenesis groups was the highest. Significant correlation between new bone formation by distraction osteogenesis and NADPH-d-reactive neurons was found, varying according to neuronal cell size (r = -0.6, P = 0.005, small cells strongly stained; r = 0.5, P = 0.018, large cells moderately stained). The results suggest that NOS may play a role in the bone healing process via neurogenic pathways, and the phenomenon seems to be neuronal cell morphotype-dependent. Further studies are now warranted to investigate the mechanistic link between the expression of trigeminal NOS and mandibular new bone formation by distraction osteogenesis.
Resumo:
Objective Hypertensive rats are more sensitive to the pressor effects of acute ouabain than normotensive rats. We analyzed the effect of chronic ouabain (similar to 8.0 mu g/day, 5 weeks) treatment on the blood pressure of spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats and the contribution of vascular mechanisms. Methods Responses to acetylcholine and phenylephrine were analyzed in isolated tail arteries. Protein expression of endothelial nitric oxide synthase and cyclooxygenase-2 (COX-2) were also investigated. Results Ouabain treatment enhanced blood pressure only in SHRs. The pD(2) for acetylcholine was decreased in arteries from SHRs compared with Wistar-Kyoto rats, and ouabain did not change this parameter. However, ouabain was able to increase the pD(2) to phenylephrine in SHRs. Nitric oxide synthase inhibition with N(G)-nitro-L-arginine methyl ester or potassium channel blockade by tetraetylamonium increased the response to phenylephrine in SHRs, with a smaller increase in response observed in ouabain-treated SHRs. In addition, indomethacin (a COX inhibitor) and ridogrel (a thromboxane A(2) synthase inhibitor and prostaglandin H(2)/thromboxane A(2) receptor antagonist) decreased contraction to phenylephrine in tail rings from ouabain-treated SHRs. Protein expression of endothelial nitric oxide synthase was unaltered following ouabain treatment in SHRs, whereas COX-2 expression was increased. Conclusion Chronic ouabain treatment further increases the raised blood pressure of SHRs. This appears to involve a vascular mechanism, related to a reduced vasodilator influence of nitric oxide and endothelium-derived hyperpolarizing factor and increased production of vasoconstrictor prostanoids by COX-2. These data suggest that the increased plasma levels of ouabain could play an important role in the maintenance of hypertension and the impairment of endothelial function. J Hypertens 27:1233-1242 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Background and purpose: The present study was designed to assess whether cyclooxygenase-2 (COX-2) activation is involved in the effects of chronic aldosterone treatment on endothelial function of mesenteric resistance arteries (MRA) from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Experimental approach: Relaxation to acetylcholine was measured in MRA from both untreated and aldosterone-treated strains. Vasomotor responses to prostacyclin and U46619 were also analysed. Release of 6-oxo-prostaglandin (PG)F(1 alpha) and thromboxane B(2) (TxB(2)) was determined by enzyme immunoassay. COX-2 protein expression was measured by western blot. Key results: Aldosterone reduced acetylcholine relaxation in MRA from both strains. In MRA from both aldosterone-treated strains the COX-1/2 or COX-2 inhibitor (indomethacin and NS-398, respectively), Tx2 synthesis inhibitor (furegrelate), prostacyclin synthesis inhibitor (tranylcypromine) or Tx2/PG2 receptor antagonist (SQ 29 548), but not COX-1 inhibitor SC-560, increased acetylcholine relaxation. In untreated rats this response was increased only in SHR. Prostacyclin elicited a biphasic vasomotor response: lower concentrations elicited relaxation, whereas higher concentrations elicited contraction that was reduced by SQ 29 548. Aldosterone increased the acetylcholine-stimulated production of 6-oxo-PGF(1 alpha) and TxB(2) in MRA from both strains. COX-2 expression was higher in both strains of rats treated with aldosterone. Conclusions and implications: Chronic treatment with aldosterone impaired endothelial function in MRA under normotensive and hypertensive conditions by increasing COX-2-derived prostacyclin and thromboxane A(2). As endothelial dysfunction participates in the pathogenesis of many cardiovascular disorders we hypothesize that anti-inflammatory drugs, specifically COX-2 inhibitors, could ameliorate vascular damage in patients with elevated aldosterone production.
Resumo:
Innate immune recognition of flagellin is shared by transmembrane TLR5 and cytosolic Nlrc4 (NOD-like receptor family CARD (caspase activation recruitment domain) domain containing 4)/Naip5 (neuronal apoptosis inhibitory protein 5). TLR5 activates inflammatory genes through MYD88 pathway, whereas Nlrc4 and Naip5 assemble multiprotein complexes called inflammasomes, culminating in caspase-1 activation, IL-1 beta/IL-18 secretion, and pyroptosis. Although both TLR5 and Naip5/Nlrc4 pathways cooperate to clear infections, little is known about the relative anti-pathogen effector mechanisms operating through each of them. Here we show that the cytosolic flagellin (FLA-BSDot) was able to activate iNOS, an enzyme previously associated with TLR5 pathway. Using Nlrc4- or Naip5-deficient macrophages, we found that both receptors are involved in iNOS activation by FLA-BSDot. Moreover, distinct from extracellular flagellin (FLA-BS), iNOS activation by intracellular flagellin is completely abrogated in the absence of caspase-1. Interestingly, IL-1 beta and IL-18 do not seem to be important for FLA-BSDot-mediated iNOS production. Together, our data defined an additional anti-pathogen effector mechanism operated through Naip5 and Nlrc4 inflammasomes and illustrated a novel signaling transduction pathway that activates iNOS.
Resumo:
Background/Aim: Chagas` disease is caused by Trypanosoma cruzi and occurs in most Latin American countries. The protozoan may colonize the central nervous system (CNS) of immune-compromised human hosts, thus causing neuronal disorders. Systemic control of the intracellular forms of the parasite greatly depends on the establishment of a TH1 response and subsequent nitric oxide (NO) release. At the CNS, it is known that low concentrations of NO promote neuronal survival and growth, while high concentrations exert toxic effects and neuron death. Accounting for NO production by astrocytes is the glia-derived factor S100 beta, which is overproduced in some neurodegenerative diseases. In the current work, we studied the expression of NO, interferon (IFN)-gamma and S100 beta in the spinal cord tissue of IL-12p40KO mice infected with T. cruzi, a model of neurodegenerative process. Methods: IL-12p40KO and wild-type (WT) female mice infected with T. cruzi Sylvio X10/4 (10(5) trypomastigotes, intraperitoneally) were euthanized when IL-12p40KO individuals presented limb paralysis. Spinal cord sections were submitted to immunohistochemical procedures for localization of neurofilament, laminin, nitrotyrosine, NO synthases (NOS), IFN-gamma and S100 beta. The total number of neurons was estimated by stereological analysis and the area and intensity of immunoreactivities were assessed by microdensitometric/morphometric image analysis. Results: No lesion was found in the spinal cord sections of WT mice, while morphological disarrangements, many inflammatory foci, enlarged vessels, amastigote nests and dying neurons were seen at various levels of IL-12p40KO spinal cord. Compared to WT mice, IL-12p40KO mice presented a decrement on total number of neurons (46.4%, p<0.05) and showed increased values of immunoreactive area for nitrotyrosine (239%, p<0.01) and NOS (544%, p<0.001). Moreover, the intensity of nitrotyrosine (16%, p<0.01), NOS (38%, p<0.05) and S100 beta (21%, p<0.001) immunoreactivities were also augmented. No IFN-gamma labeled cells were seen in WT spinal cord tissue, contrary to IL-12p40KO tissue that displayed inflammatory infiltrating cells and also some parenchymal cells positively labeled.Conclusion: We suggest that overproduction of NO may account for neuronal death at the spinal cord of T. cruzi-infected IL-12p40KO mice and that IFN-gamma and S100 beta may contribute to NOS activation in the absence of IL-12. Copyright (C) 2009 S. Karger AG, Basel