167 resultados para Thin-Layer chromatography


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a series of depositions of titanium nitride (TiN) films on M2 and D2 steel substrates were conducted in a Triode Magnetron Sputtering chamber. The temperature; gas flow and pressure were kept constant during each run. The substrate bias was either decreased or increased in a sequence of steps. Residual stress measurements were later conducted through the grazing X-ray diffraction method. Different incident angles were used in order to change the penetration depth and to obtain values of residual stress at different film depths. A model described by Dolle was adapted as an attempt to calculate the values of residual stress at each incident angle as a function of the value from each individual layer. Stress results indicated that the decrease in bias voltage during the deposition has produced compressive residual stress gradients through the film thickness. On the other hand, much less pronounced gradients were found in one of the films deposited with increasing bias voltage. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorbent and corrosion resistant films are useful for sensor development. Therefore, the aim of this work is the production and characterization of plasma polymerized fluorinated organic ether thin films for sensor development. The polymerized reactant was methyl nonafluoro(iso)butyl ether. Infrared Spectroscopy showed fluorinated species and eventually CO but CH(n) is a minor species. Contact angle measurements indicated that the film is hydrophobic and organophilic but oleophobic. Optical microscopy reveals not only a good adherence on metals and acrylic but also resistance for organic solvents, acid and basic aqueous solution exposure. Double layer and intermixing are possible and might lead to island formation. Quartz Crystal Microbalance showed that 2-propanol permeates the film but there is no sensitivity to n-hexane. The microreactor manufactured using a 73 cm long microchannel can retain approximately 9 X 10(-4) g/cm(2) of 2-propanol in vapor phase. Therefore, the film is a good candidate for preconcentration of volatile organic compounds even in corrosive environment. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work SiOxNy films are produced and characterized. Series of samples were deposited by the plasma enhanced chemical vapor deposition (PECVD) technique at low temperatures from silane (SiH4), nitrous oxide (N2O) and helium (He) precursor gaseous mixtures, at different deposition power in order to analyze the effect of this parameter on the films structural properties, on the SiOxNy/Si interface quality and on the SiOxNy effective charge density. In order to compare the film structural properties with the interface (SiOxNy/Si) quality and effective charge density, MOS capacitors were fabricated using these films as dielectric layer. X-ray absorption near-edge spectroscopy (XANES), at the Si-K edge, was utilized to investigate the structure of the films and the material bonding characteristics were analyzed through Fourier transform infrared spectroscopy (FTIR). The MOS capacitors were characterized by low and high frequency capacitance (C-V) measurements, in order to obtain the interface state density (D-it) and the effective charge density (N-ss). An effective charge density linear reduction for decreasing deposition power was observed, result that is attributed to the smaller amount of ions present in the plasma for low RF power. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work a new method for crosslinking ultra-thin films with potential applications in sensor systems is proposed. The films were produced by layer-by-layer (LbL) assembly using a conducting polymer, poly(o-ethoxyaniline) (POEA), alternated with a thermosetting resin, novolac-type phenolformaldehyde (PF), crosslinked by a simple thermal treatment. The PF resin served as both alternating and crosslinking agents. The films were characterized by Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, thermogravimetry (TG), desorption, doping/dedoping cycling and electrical measurements. The results showed that film architecture and crosslinking degree can be controlled by the conditions used for film deposition (number of bilayers, polymer concentration, pH, and deposition time), and crosslinking time. Moreover, this approach offers several advantages such as fast curing time and low cost, indicating that these films can be used to produce sensors with improved stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium oxide (TiO(2)) has been extensively applied in the medical area due to its proved biocompatibility with human cells [1]. This work presents the characterization of titanium oxide thin films as a potential dielectric to be applied in ion sensitive field-effect transistors. The films were obtained by rapid thermal oxidation and annealing (at 300, 600, 960 and 1200 degrees C) of thin titanium films of different thicknesses (5 nm, 10 nm and 20 nm) deposited by e-beam evaporation on silicon wafers. These films were analyzed as-deposited and after annealing in forming gas for 25 min by Ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy (RAMAN), Atomic Force Microscopy (AFM), Rutherford Backscattering Spectroscopy (RBS) and Ti-K edge X-ray Absorption Near Edge Structure (XANES). Thin film thickness, roughness, surface grain sizes, refractive indexes and oxygen concentration depend on the oxidation and annealing temperature. Structural characterization showed mainly presence of the crystalline rutile phase, however, other oxides such Ti(2)O(3), an interfacial SiO(2) layer between the dielectric and the substrate and the anatase crystalline phase of TiO(2) films were also identified. Electrical characteristics were obtained by means of I-V and C-V measured curves of Al/Si/TiO(x)/Al capacitors. These curves showed that the films had high dielectric constants between 12 and 33, interface charge density of about 10(10)/cm(2) and leakage current density between 1 and 10(-4) A/cm(2). Field-effect transistors were fabricated in order to analyze I(D) x V(DS) and log I(D) x Bias curves. Early voltage value of -1629 V, R(OUT) value of 215 M Omega and slope of 100 mV/dec were determined for the 20 nm TiO(x) film thermally treated at 960 degrees C. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impedance spectroscopy has been proven a powerful tool for reaching high sensitivity in sensor arrays made with nanostructured films in the so-called electronic tongue systems, whose distinguishing ability may be enhanced with sensing units capable of molecular recognition. In this study we show that for optimized sensors and bio-sensors the dielectric relaxation processes involved in impedance measurements should also be considered, in addition to an adequate choice of sensing materials. We used sensing units made from layer-by-layer (LbL) films with alternating layers of the polyeletrolytes, poly(allylamine) hydrochloride (PAH) and poly(vinyl sulfonate) (PVS), or LbL films of PAH alternated with layers of the enzyme phytase, all adsorbed on gold interdigitate electrodes. Surprisingly, the detection of phytic acid was as effective in the PVS/PAH sensing system as with the PAH/phytase system, in spite of the specific interactions of the latter. This was attributed to the dependence of the relaxation processes on nonspecific interactions such as electrostatic cross-linking and possibly on the distinct film architecture as the phytase layers were found to grow as columns on the LbL film, in contrast to the molecularly thin PAH/PVS films. Using projection techniques, we were able to detect phytic acid at the micromolar level with either of the sensing units in a data analysis procedure that allows for further optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic properties of copper thin films deposited in small channels and cavities were tested using Raman microscopy and mass spectroscopy (MS) techniques, mainly. The catalytic surface conditions were addressed visually and chemically by optical microscopy and X-ray photoelectron spectroscopy (XPS), respectively. The experimental conditions of present work induced copper oxidation; eventually a number of carbon species and graphite remained on the catalytic surface. Quartz crystal microbalance and mass spectroscopy data support both adsorption and catalysis phenomena. MS showed CO2 formation during n-hexane heating process but not to 2-propanol, probably due to redox reactions. XPS of copper surface present in the cavity after catalysis tests detected Cu2O and a range of possible carbon species. The adsorption and catalytic performance of copper films deposited in cavities and microchannels were quite similar. A simple miniaturized device for microanalysis was proposed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular arrangement in organic thin films is crucial for their increasing technological applications. Here, we use vibrational spectroscopy by sum-frequency generation (SFG) to study the ordering of polyelectrolyte layers adsorbed on silica for all steps of layer-by-layer (LbL) self-assembly. In situ measurements during adsorption and rinsing showed that the adsorbed polymer has a disordered conformation and confirmed surface charge overcompensation upon polyelectrolyte adsorption by probing the interfacial electric field. In dry films, the polymer chains acquired a net orientational ordering, which was affected, however, by the adsorption of subsequent layers. Such a detailed characterization may allow the control of LbL film structure and functionality with unprecedented power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin Cd(2)Nb(2)O(7) films were grown on single-crystal p-type SiO(2)/Si substrates by the metallo-organic decomposition (MOD) technique. The films were investigated by X-ray diffraction, X-ray energy-dispersive spectroscopy, and field emission scanning electron microscopy, and showed a single phase (cubic pyrochlore), a crack-free spherical grain structure, and nanoparticles with a mean size of about 68 nm. A Cauchy model was also used in order to obtain the thickness and index of refraction of the stack layers (transparent layer/SiO(2)/Si) by spectroscopic ellipsometry (SE). The dielectric constant (K) of the films was calculated to be about 25 from the capacitance-voltage (C-V) measurements. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrostatic layer-by-layer technique has been exploited as an useful strategy for fabrication of nanostructured thin films, in which specific properties can be controlled at the molecular level. Ferrofluids consist of a colloidal suspension of magnetic grains (with only a few nanometers of diameter) with present interesting physical properties and applications, ranging from telecommunication to drug delivery systems. In this article, we developed a new strategy to manipulate ferrofluids upon their immobilization in nanostructured layered films in conjunction with conventional polyelectrolytes using the layer-by-layer technique. We investigated the morphological, optical, and magnetic properties of the immobilized ferrofluid as a function of number of bilayers presented in the films. Ferrofluid/polyelectrolyte multilayers homogeneously covered the substrates surface, and the magnetic and optical properties of films exhibited a linear dependence on the number of bilayers adsorbed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient compact TiO(2) films using different polyeleetrolytes are prepared by the layer-by-layer technique (LbL) and applied as an effective contact and blocking film in dye-sensitized solar cells (DSCs). The polyanion thermal stability plays a major role on the compact layers, which decreases back electron transfer processes and current losses at the FTO/TiO(2) interface. FESEM images show that polyelectrolytes such is sodium sullonated polystyrene (PSS) and sulfonated lignin (SE), in comparison to poly(acrylic acid) (FAA), ensure an adequate morphology for the LbL TiO(2) layer deposited before the mesoporous film, even triter the sintering step at 450 degrees C. The so treated photoanode in DSCs leads to a 30% improvement On the overall conversion efficiency. Electrochemical impedance spectroscopy (EIS) is employed to ascertain the role of die compact films with such polyelectrolytes. The significant increase in V(oc) of the solar cells with adequate polyelectrolytes in the LbL TiO(2) films shows their pivotal role in decreasing the electron recombination at the FTO surface and enhancing the electrical contact of FTO with the mesoporous TiO(2) layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charge recombination at the conductor substrate/electrolyte interface has been prevented by using efficient blocking layers of TiO(2) compact films in dye-sensitized solar cell photoanodes. Compact blocking layers have been deposited before the mesoporous TiO(2) film by the layer-by-layer technique using titania nanoparticles as cations and sodium sulfonated polystyrene, PSS, as a polyanion. The TiO(2)/PSS blocking layer in a DSC prevents the physical contact of FTO and the electrolyte and leads to a 28% increase in the cell`s overall conversion efficiency, from 5.7% to 7.3%. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the effect of doping concentration and depth profile of Cu atoms on the photocatalytic and surface properties of TiO(2) films were studied. TiO(2) films of about 200 nn thickness were deposited on glass substrates on which a thin Cu layer (5 nm) was deposited. The films were annealed during 1 s to 100 degrees C and 400 degrees C, followed by chemical etching of the Cu film. The grazing incidence X-ray fluorescence measurements showed a thermal induced migration of Cu atoms to depths between 7 and 31 nm. The X-ray photoelectron spectroscopy analysis detected the presence of TiO(2), Cu(2)O and Cu(0) phases and an increasing Cu content with the annealing temperature. The change of the surface properties was monitored by the increasing red-shift and absorption of the ultraviolet-visible spectra. Contact angle measurements revealed the formation of a highly hydrophilic surface for the film having a medium Cu concentration. For this sample photocatalytic assays, performed by methylene blue discoloration, show the highest activity. The proposed mechanism of the catalytic effect, taking place on Ti/Cu sites, is supported by results obtained by theoretical calculations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report here new considerations about the relationship between the mass and charge variations (m/z relationship) in underpotential deposition (UPD), bulk deposition and also in the H(2)Se formation reaction. Nanogravimetric experiments were able to show the adsorption of H(2)SeO(3) on the AuO surface prior to the voltammetric sweep and that, after the AuO reduction, 0.40 monolayer of H(2)SeO(3) remains adsorbed on the newly reduced Au surface, which was enough to gives rise to the UPD layer. The UPD results indicate that the maximum coverage with Se(ads) on polycrystalline gold surface corresponds to approximately 0.40 monolayer, in good agreement with charge density results. The cyclic voltammetry experiments demonstrated that the amount of bulk Se obtained during the potential scan to approximately 2 Se monolayers, which was further confirmed by electrochemical quartz crystal microbalance (EQCM) measurements that pointed out a mass variation corresponding of 3 monolayers of Se. In addition, the Se thin films were obtained by chronoamperometric experiments, where the Au electrode was polarized at +0.10V during different times in 1.0 M H(2)SO(4) + 1.0 mM SeO(2). The topologic aspects of the electrodeposits were observed in Atomic Force Microscope (AFM) measurements. Finally, in highly negative potential polarizations, the H(2)Se formation was analyzed by voltammetric and nanogravimetric measurements. These finding brings a new light on the selenium electrodeposition and point up to a proposed electrochemical model for molecule controlled surface engineering. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyzed the reaction layer and measured the marginal crown fit of cast titanium applied to different phosphate-bonded investments, prepared under the following conditions (liquid concentration/casting temperature): Rema Exakt (RE) - 100%/237°C, 75%/287°C, Castorit Super C (CS)-100%/70°C, 75%/141°C and Rematitan Plus (RP)- 100%/430°C (special to titanium cast, as the control group). The reaction layer was studied using the Vickers hardness test, and analyzed by two way ANOVA and Tukey's HSD tests (α = 0.05). Digital photographs were taken of the crowns seated on the die, the misfit was measured using an image analysis system and One-way ANOVA, and Tukey's test was applied (α = 0.05). The hardness decreased from the surface (601.17 VHN) to 150 μm (204.03 VHN). The group CS 75%/141°C presented higher hardness than the other groups, revealing higher surface contamination, but there were no differences among the groups at measurements deeper than 150 μm. The castings made with CS - 100%/70°C presented the lowest levels of marginal misfit, followed by RE -100%/237°C. The conventional investments CS (100%) and RE (100%) showed better marginal fit than RP, but the CS (75%) had higher surface contamination.