131 resultados para Tariff on fishes
Resumo:
Fluorinated denture base acrylic resins can present more stable physical properties when compared with conventional polymers. This study evaluated the incorporation of a fluoroalkyl methacrylate (FMA) mixture in a denture base material and its effect on roughness and flexural strength. A swelling behavior assessment of acrylic resin specimens (n=3, per substance) after 12 h of FMA or methyl methacrylate (MMA) immersion was conducted to determine the solvent properties. Rectangular specimens (n=30) were allocated to three groups, according to the concentration of FMA substituted into the monomer component of a heat-polymerized acrylic resin (Lucitone 550), as follows: 0% (control), 10% and 20% (v/v). Acrylic resin mixed with concentrations of 25% or more did not reach the dough stage and was not viable. The surface roughness and flexural strength of the specimens were tested. Variables were analyzed by ANOVA and Tukey's test (a=0.05). Immersion in FMA produced negligible swelling, and MMA produced obvious swelling and dissolution of the specimens. Surface roughness at concentrations of 0%, 10% and 20% were: 0.25 ± 0.04, 0.24 ± 0.04, 0.22 ± 0.03 mm (F=1.78; p=0.189, not significant). Significant differences were found for flexural strength (F=15.92; p<0.001) and modulus of elasticity (F=7.67; p=0.002), with the following results: 96 ± 6, 82 ± 5, 84 ± 6 MPa, and 2,717 ± 79, 2,558 ± 128, 2574 ± 87 MPa, respectively. The solvent properties of FMA against acrylic resin are weak, which would explain why concentrations over 20% were not viable. Surface changes were not detected after the incorporation of FMA in the denture base acrylic resin tested. The addition of FMA into denture base resin may lower the flexural strength and modulus of elasticity, regardless of the tested concentration.
Resumo:
This study analyzed the reaction layer and measured the marginal crown fit of cast titanium applied to different phosphate-bonded investments, prepared under the following conditions (liquid concentration/casting temperature): Rema Exakt (RE) - 100%/237°C, 75%/287°C, Castorit Super C (CS)-100%/70°C, 75%/141°C and Rematitan Plus (RP)- 100%/430°C (special to titanium cast, as the control group). The reaction layer was studied using the Vickers hardness test, and analyzed by two way ANOVA and Tukey's HSD tests (α = 0.05). Digital photographs were taken of the crowns seated on the die, the misfit was measured using an image analysis system and One-way ANOVA, and Tukey's test was applied (α = 0.05). The hardness decreased from the surface (601.17 VHN) to 150 μm (204.03 VHN). The group CS 75%/141°C presented higher hardness than the other groups, revealing higher surface contamination, but there were no differences among the groups at measurements deeper than 150 μm. The castings made with CS - 100%/70°C presented the lowest levels of marginal misfit, followed by RE -100%/237°C. The conventional investments CS (100%) and RE (100%) showed better marginal fit than RP, but the CS (75%) had higher surface contamination.
Resumo:
OBJECTIVE: Removable partial dentures (RPD) require different hygiene care, and association of brushing and chemical cleansing is the most recommended to control biofilm formation. However, the effect of cleansers has not been evaluated in RPD metallic components. The aim of this study was to evaluate in vitro the effect of different denture cleansers on the weight and ion release of RPD. MATERIAL AND METHODS: Five specimens (12x3 mm metallic disc positioned in a 38x18x4 mm mould filled with resin), 7 cleanser agents [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) (control)] and 2 cobalt-chromium alloys [DeguDent (DD), and VeraPDI (VPDI)] were used for each experimental situation. One hundred and eighty immersions were performed and the weight was analyzed with a high precision analytic balance. Data were recorded before and after the immersions. The ion release was analyzed using mass spectrometry with inductively coupled plasma. Data were analyzed by two-way ANOVA and Tukey HSD post hoc test at 5% significance level. RESULTS: Statistical analysis showed that CT and MI had higher values of weight loss with higher change in VPDI alloy compared to DD. The solutions that caused more ion release were NaOCl and MI. CONCLUSIONS: It may be concluded that 0.05% NaOCl and Medical Interporous tablets are not suitable as auxiliary chemical solutions for RPD care.
Resumo:
Noncarious cervical lesions (NCCLs) are considered to be of multifactorial origin, normally associated with inadequate brushing. This study assessed the influence in vitro of simulated brushing on NCCL formation. Fifteen human premolars were submitted to brushing in the cementoenamel junction region, using hard-, medium- and soft-bristled brushes associated with a toothpaste of medium abrasiveness under a 200 g load, at a speed of 356 rpm for 100 minutes. The surface topography of the region was analyzed before and after brushing, by means of a laser interferometer, using "cut-off" values of 0.25 and considering roughness values in mm. The initial roughness (mm) results for dentin (D / bristle consistency: 1 - soft, 2 - medium and 3 - hard) were as follows: (D1) 1.25 ± 0.45; (D2) 1.12 ± 0.44; (D3) 1.05 ± 0.41. For enamel (E / bristle consistency: 1 - soft, 2 - medium and 3 - hard), the initial results were: (E1) 1.18 ± 0.35; (E2) 1.32 ± 0.25; (E3) 1.50 ± 0.38. After brushing, the following were the values for dentin: (D1) 2.32 ± 1.99; (D2) 3.30 ± 0.96; (D3) Over 500. For enamel, the values after brushing were: (E1) 1.37 ± 0.31; (E2) 2.15 ± 0.90; (E3) 1.22 ± 0.47. Based on the results of the ANOVA and Tukey statistical analyses (a = .05) it was concluded that soft, medium and hard brushes are not capable of abrading enamel, whereas dentin showed changes in surface roughness by the action of medium- and hard-bristled brushes.
Resumo:
Removable partial dentures (RPD) demand specific hygienic cleaning and the combination of brushing with immersion in chemical solutions has been the most recommended method for control of biofilm. However, the effect of the cleansers on metallic components has not been widely investigated. This study evaluated the effect of different cleansers on the surface of RPD. Five disc specimens (12 mm x 3 mm metallic disc centered in a 38 x 18 x 4 mm mould filled with resin) were obtained for each experimental situation: 6 solutions [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) control] and 2 Co-Cr alloys [DeguDent (DD) and VeraPDI (VPDI)] were used for each experimental situation. A 180-day immersion was simulated and the measurements of roughness (Ra, µm) of metal and resin were analyzed using 2-way ANOVA and Tukey’s test. The surface changes and tarnishes were examined with a scanning electronic microscopy (SEM). In addition, energy dispersive x-ray spectrometry (EDS) analysis was carried out at representative areas. Visually, NaOCl and MI specimens presented surface tarnishes. The roughness of materials was not affected by the solutions (p>0.05). SEM images showed that NaOCl and MI provided surface changes. EDS analysis revealed the presence of oxygen for specimens in contact with both MI and NaOCl solutions, which might suggest that the two solutions promoted the oxidation of the surfaces, thus leading to spot corrosion. Within the limitations of this study, it may be concluded that the NaOCl and MI may not be suitable for cleaning of RPD.
Resumo:
This study evaluated the loss of the torque applied after use of new screws and after successive tightening. Four infrastructures (IE), using UCLA castable abutment type, were cast in cobalt-chromium alloy and new abutment screws (G1) were used in a first moment. Subsequently, the same abutment screws were used a second time (G2) and more than two times (G3). The values of the torques applied and detorques were measured with a digital torque wrench to obtain the values of initial tightening loss (%). Data were analyzed by ANOVA and Tukey's test (?=0.05). Significant differences were observed between the G1 (50.71% ± 11.36) and G2 (24.01% ± 3.33) (p=0.000) and between G1 (50.71% ± 11.36) and G3 (25.60% ± 4.64) (p=0.000). There was no significant difference between G2 and G3 (p=0.774). Within the limitations of the study, it may be concluded that the percentage of the initial torque loss is lower when screws that already suffered the application of an initial torque were used, remaining stable after application of successive torques.
Resumo:
Prosthetic restorations that have been tried in the patient's mouth are potential sources of infection. In order to avoid cross-infection, protocols for infection control should be established in dental office and laboratory. This study evaluated the antimicrobial efficacy of disinfectants on full metal crowns contaminated with microorganisms. Full crowns cast in a Ni-Cr alloy were assigned to one control group (n=6) and 5 experimental groups (n=18). The crowns were placed in flat-bottom glass balloons and were autoclaved. A microbial suspension of each type of strain - S. aureus, P. aeruginosa, S. mutans, E. faecalis and C. albicans- was aseptically added to each experimental group, the crowns being allowed for contamination during 30 min. The contaminated specimens were placed into recipients with the chemical disinfectants (1% and 2% sodium hypochlorite and 2% glutaraldehyde) for 5, 10 and 15 min. Thereafter, the crowns were placed into tubes containing different broths and incubated at 35ºC. The control specimens were contaminated, immersed in distilled water for 20 min and cultured in Thioglycollate broth at 35ºC. Microbial growth assay was performed by qualitative visual examination after 48 h, 7 and 12 days. Microbial growth was noticed only in the control group. In the experimental groups, turbidity of the broths was not observed, regardless of the strains and immersion intervals, thus indicating absence of microbial growth. In conclusion, all chemical disinfectants were effective in preventing microbial growth onto full metal crowns.
Resumo:
The aim of this study was to analyze the shear bond strength between commercially pure titanium, with and without laser welding, after airbone-particle abrasion (Al2O3) and 2 indirect composites. Sixty-four specimens were cast and divided into 2 groups with and without laser welding. Each group was divided in 4 subgroups, related to Al2O3 grain size: A - 250 µm; B - 180 µm; C- 110 µm; and D - 50 µm. Composite rings were formed around the rods and light polymerized using UniXS unit. Specimens were invested and their shear bond strength at failure was measured with a universal testing machine at a crosshead speed of 2.0 mm/min. Statistical analysis was carried out with ANOVA and Tukey's test (α=0.05). The highest bond strength means were recorded in 250 µm group without laser welding. The lowest shear bond strength means were recorded in 50 µm group with laser welding. Statistically significant differences (p<0.05) were found between all groups. In conclusion, airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Shear bond strength decreased in the laser welded specimens.
Resumo:
This study evaluated the effects of fluoride-containing solutions on the surface of commercially pure titanium (CP Ti) obtained by casting. CP Ti specimens were fabricated and randomly assigned to 5 groups (n=10): group 1: stored in distilled water at 37 ± 1ºC; group 2: stored in distilled water at 37 ± 1ºC and daily immersed in 0.05% NaF for 3 min; group 3: stored in distilled water at 37 ± 1ºC and daily immersed in 0.2% NaF for 3 min; group 4: stored in distilled water at 37 ± 1ºC; and immersed in 0.05% NaF every 15 days for 3 min; and group 5: stored in distilled water at 37 ± 1ºC and immersed in 0.2% NaF every 15 days for 3 min. Surface roughness was measured with a profilometer immediately after metallographic polishing of the specimens (T0) and at 15-day intervals until completing 60 days of experiment (T15, T30, T45, T60). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was no statistically significant difference (p>0.05) in surface roughness among the solutions. In conclusion, fluoride-containing solutions (pH 7.0) used as mouthwashes do not damage the surface of cast CP Ti and can be used by patients with titanium-based restorations.
Resumo:
The success of metal-ceramic restorations depends on an optimal bond between metal and ceramic. This study evaluated the effect of 3 casting atmospheres on the metal-ceramic bond strength (MCBS) of 2 Ni-Cr alloys, with beryllium (Fit Cast V) and without beryllium (Fit Cast SB). Sixty acrylic resin patterns (8 mm long and 5 mm diameter) were obtained using a fluorocarbon resin matrix. Wax was used to refine the surface of acrylic resin patterns that were invested and cast in an induction casting machine under normal, vacuum, and argon atmospheres at a temperature of 1340ºC. The castings were divested manually and airborne-particle abraded with 100-µm aluminum-oxide. Ten castings were obtained for each group. The IPS Classic V ceramic was applied (2 mm high and 5 mm diameter). The shear bond strength was tested in a mechanical testing machine with a crosshead speed of 2.0 mm/min. The MCBS data (MPa) were subjected to 2-way analysis of variance (α=0.05). There was no statistically significant difference (p>0.05) between the alloys or among the casting atmospheres. Within the limitations of this study, it may be concluded that the presence of beryllium and the casting atmosphere did not interfere in the MCBS of the evaluated metal-ceramic combinations
Resumo:
OBJECTIVES: The purpose of this study was to assess the color change of three types of composite resins exposed to coffee and cola drink, and the effect of repolishing on the color stability of these composites after staining. MATERIALS AND METHODS: Fifteen specimens (15 mm diameter and 2 mm thick) were fabricated from microhybrid (Esthet-X; Dentsply and Filtek Z-250; 3M ESPE) and high-density hybrid (Surefil; Dentsply) composites, and were finished and polished with aluminum oxide discs (Sof-Lex; 3M ESPE). Color of the specimens was measured according to the CIE L*a*b* system in a refection spectrophotometer (PCB 6807; BYK Gardner). After baseline color measurements, 5 specimens of each resin were immersed in different staining solutions for 15 days: G1 - distilled water (control), G2 - coffee, G3 - cola soft drink. Afterwards, new color measurement was performed and the specimens were repolished and submitted to new color reading. Color stability was determined by the difference (ΔE) between the coordinates L*, a*, and b* obtained from the specimens before and after immersion into the solutions and after repolishing. RESULTS: There was no statistically signifcant difference (ANOVA, Tukey's test; p>0.05) among the ΔE values for the different types of composites after staining or repolishing. For all composite resins, coffee promoted more color change (ΔE>3.3) than distilled water and the cola soft drink. After repolishing, the ΔE values of the specimens immersed in coffee decreased to clinically acceptable values (ΔE<3.3), but remained signifcantly higher than those of the other groups. CONCLUSIONS: No signifcant difference was found among composite resins or between color values before and after repolishing of specimens immersed in distilled water and cola. Immersing specimens in coffee caused greater color change in all types of composite resins tested in this study and repolishing contributed to decrease staining to clinically acceptable ΔE values.
Resumo:
OBJECTIVES: To evaluate the color stability and hardness of two denture liners obtained by direct and indirect techniques, after thermal cycling and immersion in beverages that can cause staining of teeth. MATERIAL AND METHODS: Seventy disc-shaped specimens (18 x 3 mm) processed by direct (DT) and indirect techniques (IT) were made from Elite soft (n=35) and Kooliner (n=35) denture liners. For each material and technique, 10 specimens were subjected to thermal cycling (3,000 cycles) and 25 specimens were stored in water, coffee, tea, soda and red wine for 36 days. The values of color change, Shore A hardness (Elite soft) and Knoop hardness (Kooliner) were obtained. The data were subjected to ANOVA, Tukey's multiple-comparison test, and Kruskal-Wallis test (P<0.05). RESULTS: The thermal cycling promoted a decrease on hardness of Kooliner regardless of the technique used (Initial: 9.09± 1.61; Thermal cycling: 7.77± 1.47) and promoted an increase in the hardness in the DT for Elite Soft (Initial: 40.63± 1.07; Thermal cycling: 43.53± 1.03); hardness of Kooliner (DT: 8.76± 0.95; IT: 7.70± 1.62) and Elite Soft (DT: 42.75± 1.54; IT=39.30± 2.31) from the DT suffered an increase after the immersion in the beverages. The thermal cycling promoted color change only for Kooliner in the IT. Immersion in the beverages did not promote color change for Elite in both techniques. The control group of the DT of Kooliner showed a significant color change. Wine and coffee produced the greatest color change in the DT only for Elite Soft when compared to the other beverages. CONCLUSION: The three variation factors promoted alteration on hardness and color of the tested denture lining materials.
Resumo:
OBJECTIVE: The purpose of this study was to evaluate, by shear bond strength (SBS) testing, the influence of different types of temporary cements on the final cementation using conventional and self-etching resin-based luting cements. Material and Methods: Forty human teeth divided in two halves were assigned to 8 groups (n=10): I and V (no temporary cementation); II and VI: Ca(OH)2-based cement; III and VII: zinc oxide (ZO)-based cement; IV and VIII: ZO-eugenol (ZOE)-based cement. Final cementation was done with RelyX ARC cement (groups I to IV) and RelyX Unicem cement (groups V to VIII). Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. RESULTS: Means were (MPa): I - 3.80 (±1.481); II - 5.24 (±2.297); III - 6.98 (±1.885); IV - 6.54 (±1.459); V - 5.22 (±2.465); VI - 4.48 (±1.705); VII - 6.29 (±2.280); VIII - 2.47 (±2.076). Comparison of the groups that had the same temporary cementation (Groups II and VI; III and VII; IV and VIII) showed statistically significant difference (p<0.001) only between Groups IV and VIII, in which ZOE-based cements were used. The use of either Ca(OH)2-based (Groups II and VI) or ZO-based (Groups III and VII) cements showed no statistically significant difference (p>0.05) for the different luting cements (RelyX TM ARC and RelyX TM Unicem). The groups that had no temporary cementation (Groups I and V) did not differ significantly from each other either (p>0.05). CONCLUSION: When temporary cementation was done with ZO- or ZOE-based cements and final cementation was done with RelyX ARC, there was an increase in the SBS compared to the control. In the groups cemented with RelyX Unicem, however, the use of a ZOE-based temporary cement affected negatively the SBS of the luting agent used for final cementation.
Resumo:
The acellular dermal matrix (ADM) was introduced in periodontology as a substitute for the autogenous grafts, which became restricted because of the limited source of donor's tissue. The aim of this study was to investigate, in vitro, the distribution, proliferation and viability of human gingival fibroblasts seeded onto ADM. ADM was seeded with human gingival fibroblasts for up to 21 days. The following parameters were evaluated: cell distribution, proliferation and viability. Results revealed that, at day 7, fibroblasts were adherent and spread on ADM surface, and were unevenly distributed, forming a discontinuous single cell layer; at day 14, a confluent fibroblastic monolayer lining ADM surface was noticed. At day 21, the cell monolayer exhibited a reduction in cell density. At 7 days, about to 90% of adherent cells on ADM surface were cycling while at 14 and 21 days this proportion was significantly reduced. A high proportion of viable cell was detected on AMD surface both on 14 and 21 days. The results suggest that fibroblast seeding onto ADM for 14 days can allow good conditions for cell adhesion and spreading on the matrix; however, migration inside the matrix was limited.
Resumo:
The identification of the mandibular canal (MC) is an important prerequisite for surgical procedures involving the posterior mandible. Cone beam computed tomography (CBCT) represents an advance in imaging technology, but distinguishing the MC from surrounding structures may remain a delicate task. OBJECTIVES: The aim of this study was to assess the visibility of the MC in different regions on CBCT cross-sectional images. MATERIAL AND METHODS: CBCT cross-sectional images of 58 patients (116 hemi-mandibles) were analyzed, and the visibility of the MC in different regions was assessed. RESULTS: The MC was clearly visible in 53% of the hemi-mandibles. Difficult and very difficult visualizations were registered in 25% and 22% of the hemi-mandibles, respectively. The visibility of the MC on distal regions was superior when compared to regions closer to the mental foramen. No differences were found between edentulous and tooth-bearing areas. CONCLUSIONS: The MC presents an overall satisfactory visibility on CBCT cross-sectional images in most cases. However, the discrimination of the canal from its surrounds becomes less obvious towards the mental foramen region when cross-sectional images are individually analyzed.