34 resultados para TRANSITION-METAL NANOCLUSTERS
Resumo:
We report the synthesis and spectroscopic/electrochemical properties of iron(II) complexes of polydentate Schiff bases generated from 2-acetylpyridine and 1,3-diaminopropane, acetylpyrazine and 1,3-diaminopropane, and from 2-acetylpyridine and L-histidine. The complexes exhibit bis(diimine)iron(II) chromophores in association with pyrazine, pyridine or imidazole groups displaying contrasting pi-acceptor properties. In spite of their open geometry, their properties are much closer to those of macrocyclic tetraimineiron(II) complexes. An electrochemical/spectroscopic correlation between E degrees(Fe(III/II)) and the energies of the lowest MLCT band has been observed, reflecting the stabilization of the HOMO levels as a consequence of the increasing backbonding effects in the series of compounds. Mossbauer data have also confirmed the similarities in their electronic structure, as deduced from the spectroscopic and theoretical data. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nitrate reduction on palladium multilayers deposited on platinum single crystal electrodes was studied by cyclic voltammetry and FTIR spectroscopy in acid and alkaline media. The results are compared with those obtained with bulk palladium single crystals. The reaction is sensitive to the electrode surface structure, the reactivity depending on the solution pH. In acid solution nitrate was reduced at potentials below the potential of zero total charge (pztc), when the electrode is negatively charged. Competition between nitrate, hydrogen and anion adsorption and NO formation and accumulation at the surface are proposed as the main reasons for the slow reaction rate. On the bulk palladium single crystal electrodes, NO formation leads to a fast blockage of the surface resulting in a very low activity for nitrate reduction. In alkaline solution, nitrate is reduced at more positive potentials with significantly higher current being measured on the Pd multilayer on Pt(100) electrode. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ordered intermetallic phases of Pt with several transition metals have been prepared and their electrocatalytic properties studied. In light of these tests it is proposed that these catalysts could be used as electrodes in fuel cells, as they combine an excellent capacity to adsorb organic fuels at the Pt sites with low susceptibility to being poisoned by intermediates and reaction products at the transition-metal sites. An experimental procedure used to obtain the four intermetallic phases Pt-M (M = Mn, Pb, Sb and Sn) is described. The phases thus produced were characterized by X-ray diffraction, scanning electron microscopy with surface analysis by energy-dispersive X-ray spectrometry, scanning tunneling microscopy and X-ray photoelectron spectroscopy. The data thus obtained support the conclusion that the method described here is highly effective for the preparation of Pt-M phases featuring a range of structural and electronic modifications that will allow a useful relation to be established between their physicochemical properties and predicted electrocatalytic activity. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A new vanadium (IV) complex with the monoanion of 2,3-dihydroxypyridine (H(2)dhp), or 3-hydroxy-2(1H)-pyridone, was synthesized, characterized by physicochemical techniques and tested biologically. The EPR data for the [VO(Hdhp)(2)] complex in DMF are: g(x) = 1.9768, g(y) = 1.9768 and g(z) = 1.9390; A values (10(-4) cm(-1)): A(x), 59.4; A(y//), 59.4; A(z), 171.0. The vV=O band in the IR spectrum of the complex is at 986 cm(-1). The complex is paramagnetic, with mu(eff) = 1.65 BM (d(1), spin-only) at 25 degrees C. The irreversible oxidation process [V(V)/V(IV)] of the [VO(Hdhp)(2)] complex, as revealed in a cyclic voltammogram, occurs at 876 mV. The calculated molecular structure of [VO(Hdhp)(2)] shows the vanadium(IV) center in a distorted square pyramidal environment, with the oxo ligand in the apical position and the oxygen donor atoms of the Hdhp ligands in the basal positions. The ability of [VO(Hdhp)(2)] to mimic insulin, and its toxicity to hepato-biliary functions, were investigated in streptozotocin-induced diabetic rats and it was concluded that the length of treatment and the amount of [VO(Hdhp)(2)] administered were effective in reducing experimental diabetes.