34 resultados para Spatio-temporal changes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous magnetic resonance imaging (MRI) studies described consistent age-related gray matter (GM) reductions in the fronto-parietal neocortex, insula and cerebellum in elderly subjects, but not as frequently in limbic/paralimbic structures. However, it is unclear whether such features are already present during earlier stages of adulthood, and if age-related GM changes may follow non-linear patterns at such age range. This voxel-based morphometry study investigated the relationship between GM volumes and age specifically during non-elderly life (18-50 years) in 89 healthy individuals (48 males and 41 females). Voxelwise analyses showed significant (p < 0.05, corrected) negative correlations in the right prefrontal cortex and left cerebellum, and positive correlations (indicating lack of GM loss) in the medial temporal region, cingulate gyrus, insula and temporal neocortex. Analyses using ROI masks showed that age-related dorsolateral prefrontal volume decrements followed non-linear patterns, and were less prominent in females compared to males at this age range. These findings further support for the notion of a heterogeneous and asynchronous pattern of age-related brain morphometric changes, with region-specific non-linear features. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: As reported by several authors, angiotensin II (AngII) is a proinflammatory molecule that stimulates the release of inflammatory cytokines and activates nuclear factor kappa B (NF kappa B), being also associated with the increase of cellular oxidative stress. Its production depends on the activity of the angiotensin converting enzyme (ACE) that hydrolyzes the inactive precursor angiotensin I (AngI) into AngII. It has been suggested that AngII underlies the physiopathological mechanisms of several brain disorders such as stroke, bipolar disorder, schizophrenia, and disease. The aim of the present work was to localize and quantify AngII AT1 and AT2 receptors in the cortex and hippocampus of patients with temporal lobe epilepsy related to mesial temporal sclerosis (MTS) submitted to corticoamygdalohippocampectomy for seizure control. Method: Immunohistochemistry, Western blot, and real-time PCR techniques were employed to analyze the expression of these receptors. Results: The results showed an upregulation of AngII AT1 receptor as well as its messenger ribonucleic acid (mRNA) expression in the cortex and hippocampus of patients with MTS. In addition, an increased immunoexpression of AngII AT2 receptors was found only in the hippocampus of these patients with no changes in its mRNA levels. Discussion: These data show, for the first time, changes in components of renin-angiotensin system (RAS) that could be implicated in the physiopathology of MTS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the clinical and hippocampal histological features of patients with mesial temporal lobe epilepsy (MTLE) in both familial (FMTLE) and sporadic (SMTLE) forms. Methods: Patients with FMTLE (n = 20) and SMTLE (n = 39) who underwent surgical treatment for refractory seizures were studied at the University of Sao Paulo School of Medicine at Ribeirao Preto. FMTLE was defined when at least two individuals in a family had clinical diagnosis of MTLE. Hippocampi from all patients were processed for Nissl/HE and Timm`s stainings. Both groups were compared for clinical variables, hippocampal cell densities, and intensity of supragranular mossy fiber staining. Results: There were no significant differences between FMTLE and SMTLE groups in the following: age at the surgery, age of first usual epileptic seizure, history of initial precipitating injury (IPI), age of IPI, latent period, ictal and interictal video-EEG patterns, presence of hippocampal atrophy and signal changes at MRI, and postoperative outcome. In addition, no differences were found in cell densities in hippocampal cornu ammonis subfields (CA1, CA2, CA3, CA4), fascia dentata, polymorphic region, subiculum, prosubiculum, and presubiculum. However, patients with SMTLE had greater intensity of mossy fiber Timm`s staining in the fascia dentata-inner molecular layer (p < 0.05). Discussion: Patients with intractable FMTLE present a clinical profile and most histological findings comparable to patients with SMTLE. Interestingly, mossy fiber sprouting was less pronounced in patients with FMTLE, suggesting that, when compared to SMTLE, patients with FMTLE respond differently to plastic changes plausibly induced by cell loss, neuronal deafferentation, or epileptic seizures.