43 resultados para Si (111)
Resumo:
Thin zirconium nitride films were prepared on Si(l 00) substrates at room temperature by ion beam assisted deposition with a 2 keV nitrogen ion beam. Arrival rate ratios ARR(N/Zr) used were 0.19, 0.39, 0.92, and 1.86. The chemical composition and bonding structure of the films were analyzed with X-ray photoelectron spectroscopy (XPS). Deconvolution results for Zr 3d, Zr 3p(3/2), N 1s, O 1s, and C 1s XPS spectra indicated self-consistently the presence of metal Zr-0, nitride ZrN, oxide ZrO2, oxymnide Zr2N2O, and carbide ZrC phases, and the amounts of these compounds were influenced by ARR(N/Zr). The chemical composition ratio N/Zr in the film increased with increasing ARR(N/Zr) until ARR(N/Zr) reached 0.92, reflecting the high reactivity of nitrogen in the ion beam, and stayed almost constant for ARR(N/Zr) >= 1, the excess nitrogen being rejected from the growing film. A considerable incorporation of contaminant oxygen and carbon into the depositing film was attributed to the getter effect of zirconium. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The quadrupolar hyperfine interactions of in-diffused (111)In -> (111)Cd probes in polycrystalline isostructural Zr(4)Al(3) and Hf(4)Al(3) samples containing small admixtures of the phases (Zr/Hf)(3)Al(2) were investigated. A strong preference of (111)In solutes for the contaminant (Zr/Hf)(3)Al(2) minority phases was observed. Detailed calculations of the electric field gradient (EFG) at the Cd nucleus using the full-potential augmented plane wave + local orbital formalism allowed us to assign the observed EFG fractions to the various lattice sites in the (Zr/Hf)(3)Al(2) compounds and to understand the preferential site occupation of the minority phases by the (111)In atoms. The effects of the size of the supercell and relaxation around the oversized In and Cd probe atoms were investigated in detail.
Resumo:
In this work we employ the state-of-the-art pseudopotential method, within a generalized gradient approximation to the density functional theory, combined with a recently developed method for the calculation of HREELS spectra to study a series of different proposed models for carbon incorporation on the silicon (001) surface. A fully discussion on the geometry, energetics and specially the comparison between experimental and theoretical STM images and electron energy loss spectra indicate that the Si(100)-c(4 x 4) is probably induced by Si-C surface dinners, in agreement with recent experimental findings. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
By using the time-differential perturbed angular correlation technique, the electric field gradients (EFG) at (181)Hf/(181)Ta and (111)In/(111)Cd probe sites in the MoSi(2)-type compound Ti(2)Ag have been measured as a function of temperature in the range from 24 to 1073 K. Ab initio EFG calculations have been performed within the framework of density functional theory using the full-potential augmented plane wave + local orbitals method as implemented in the WIEN2k package. These calculations allowed assignments of the probe lattice sites. For Ta, a single well-defined EFG with very weak temperature dependence was established and attributed to the [4(e)4mm] Ti site. For (111)Cd probes, two of the three measured EFGs are well defined and correlated with substitutional lattice sites, i.e. both the [4(e)4mm] Ti site and the [2(a)4/mmm] Ag site.
Resumo:
In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of furan on the silicon (001) surface. A direct comparison of different adsorption structures with x-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), high resolution electron energy loss spectroscopy (HREELS), near edge x-ray absorption fine structure (NEXAFS), and high resolution spectroscopy experimental data allows us to identify the [4 + 2] cycloaddition reaction as the most probable adsorbate. In addition, theoretical scanning tunnelling microscopy (STM) images are presented, with a view to contributing to further experimental investigations.
Resumo:
In this work we analyze the spin-polarized charge density distribution in the GeMn diluted ferromagnetic semiconductors (DFS). The calculations are performed within a self-consistent k.p method, in which the exchange correlation effects in the local density approximation, as well as the strain effects due to the lattice mismatch, are taken into account. Our findings show that the extra confinement potential provided by the barriers and the variation of the Mn content in the DFS are responsible for a separation between the different spin charge densities, giving rise to higher mobility spin-polarized currents or high ferromagnetism transition temperatures systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electronic and optical properties of grossular garnet are investigated using density functional theory (DFT) within generalized gradient approximation (GGA). The calculated lattice parameters are in good agreement with the experiment data. The electronic structure shows that grossular has a direct band gap of 5.22 eV. The dielectric functions, reflective index, extinction coefficient, reflectivity and energy-loss spectrum are calculated. The optical properties of grossular are discussed based on the band structure calculations. The O 2p states and Si 3s play a major role in these optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 30 and 250 nm. Finally, we concluded that pure grossular crystal does not absorb radiation in the visible range. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study reports the results of ab initio electronic and optical calculations for pure socialite crystal using the linear augmented plane wave (LAPW) method within density functional theory (DFT). The calculated electronic structure revealed predominantly orbital characters of the valence band and the conduction band, and enabled us to determine the type and the value of the fundamental gap of the compound. The imaginary part of the dielectric tensor, extinction coefficient and refraction index were calculated as functions of the incident radiation wavelength. It is shown that the O 2p states and Na 3s states play the major role in optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 40 and 250 nm. Furthermore, we concluded that the material does not absorb radiation in the visible range. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Thin Cd(2)Nb(2)O(7) films were grown on single-crystal p-type SiO(2)/Si substrates by the metallo-organic decomposition (MOD) technique. The films were investigated by X-ray diffraction, X-ray energy-dispersive spectroscopy, and field emission scanning electron microscopy, and showed a single phase (cubic pyrochlore), a crack-free spherical grain structure, and nanoparticles with a mean size of about 68 nm. A Cauchy model was also used in order to obtain the thickness and index of refraction of the stack layers (transparent layer/SiO(2)/Si) by spectroscopic ellipsometry (SE). The dielectric constant (K) of the films was calculated to be about 25 from the capacitance-voltage (C-V) measurements. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The biological effects of chemical substitution of DNA bases triggered several investigations of their physicochemical properties This paper studies the adsorption behavior of a halogenated uracil, 5-fluorouracil (5FU). at the electrochemical interface of Au(111) and sulfuric acid solution. Upon modulation of the electric field across the interface, four distinct phases could be inferred by means of cyclic voltammetry (CV) At negative potentials relative to the SCE electrode, limited by the threshold of hydrogen evolution, no molecular species could be detected by scanning tunneling microscopy (STM) at the reconstructed Au(111)-(23 x root 3) surface, indicating that any physisorbed molecules are randomly distributed Incursion into more positive potentials increases the surface population but doer not form any two-dimensional (2D) physisorbed ordered structure Instead, we observed metastable structures that are only detectable. on surfaces with high defect density At sufficiently high positive potentials. limited by gold oxidation, the molecules are chemisorbed in a (3 x 2 root 3) ordered structure. with the aromatic ring perpendicular to the surface We report the densest chemisorbed monolayer for pyrimidine-derivative molecules (area per molecule 0 14 +/- 0 04 nm(2)). A comparison of the adsorption behavior of uracil derivatives has been made based on recent results of chemical substitution and solvent effects. We propose that pi-stacking is enhanced when halogens are incorporated in the uracil structure, in a similar fashion to what is observed in then crystal structure
Resumo:
A high level theoretical approach is used to characterize for the first time a manifold of doublet and quartet A + S and Omega states correlating with the first two dissociation channels of an as yet experimentally unknown molecular species, SI, sulfur monoidide. A set of spectroscopic constants is determined, including vibrationally averaged spin-orbit coupling constants, vibrationally averaged dipole moments, and dissociation energies. The transition dipole moment function for the spin-forbidden transition a (4)Sigma -X (2)Pi, and the associated radiative lifetimes were also evaluated. Two possibilities to detect transitions experimentally and to derive spectroscopic constants are suggested. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
In this present work a method for the determination of Ca, Fe, Ga, Na, Si and Zn in alumina (Al(2)O(3)) by inductively coupled plasma optical emission spectrometry (ICP OES) with axial viewing is presented. Preliminary studies revealed intense aluminum spectral interference over the majority of elements and reaction between aluminum and quartz to form aluminosilicate, reducing drastically the lifetime of the torch. To overcome these problems alumina samples (250 mg) were dissolved with 5 mL HCl + 1.5 mLH(2)SO(4) + 1.5 mL H(2)O in a microwave oven. After complete dissolution the volume was completed to 20 mL and aluminum was precipitated as Al(OH)(3) with NH(3) (by bubbling NH(3) into the solution up to a pH similar to 8, for 10 min). The use of internal standards (Fe/Be, Ga/Dy, Zn/In and Na/Sc) was essential to obtain precise and accurate results. The reliability of the proposed method was checked by analysis of alumina certified reference material (Alumina Reduction Grade-699, NIST). The found concentrations (0.037%w(-1) CaO, 0.013% w w(-1) Fe(2)O(3), 0.012%w w(-1)Ga(2)O(3), 0.49% w w(-1) Na(2)O, 0.014% w w(-1) SiO(2) and 0.013% w w(-1) ZnO) presented no statistical differences compared to the certified values at a 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The oscillatory electro-oxidation of methanol was studied by means of in situ infrared (IR) spectroscopy in the attenuated total reflection (ATR) configuration using a platinum film on a Si prism as working electrode. The surface-enhanced infrared absorption (SEIRA) effect considerably improves the spectroscopic resolution, allowing at following the coverage of some adsorbing species during the galvanostatic oscillations. Carbon monoxide was the main adsorbed specie observed in the induction period and within the oscillatory regime. The system was investigated at two distinct time-scales and its dynamics characterized accordingly. During the induction period the main transformation observed as the system move through the phase space towards the oscillatory region was the decrease of the coverage of adsorbed carbon, coupled to the increase of the electrode potential. Similar transition characterizes the evolution within the oscillatory region, but at a considerably slower rate. Experiments with higher time resolution revealed that the electrode potential oscillates in-phase with the frequency of the linearly adsorbed CO vibration and that the amount of adsorbed CO oscillates with small amplitude. Adsorbed formate was found to play, if any, a very small role. Results are discussed and compared with other systems. (C) 2010 Elsevier B.V. All rights reserved.