164 resultados para SEROTONIN(1A) RECEPTOR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wealth of evidence suggests a role for brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) in the aetiology of depression and in the mode of action of antidepressant drugs. Less clear is the involvement of this neurotrophin in other stress-related pathologies such as anxiety disorders. The dorsal periaqueductal grey matter (DPAG), a midbrain area rich in BDNF and TrkB receptor mRNAs and proteins, has been considered a key structure in the pathophysiology of panic disorder. In this study we investigated the effect of intra-DPAG injection of BDNF in a proposed animal model of panic: the escape response evoked by the electrical stimulation of the same midbrain area. To this end, the intensity of electrical current that needed to be applied to DPAG to evoke escape behaviour was measured before and after microinjection of BDNF. We also assessed whether 5-HT- or GABA-related mechanisms may account for the putative behavioural/autonomic effects of the neurotrophin. BDNF (0.05, 0.1, 0.2 ng) dose-dependently inhibited escape performance, suggesting a panicolytic-like effect. Local microinjection of K252a, an antagonist of TrkB receptors, or bicuculline, a GABA(A) receptor antagonist, blocked this effect. Intra-DPAG administration of WAY-100635 or ketanserin, respectively 5-HT(1A) and 5-HT(2A/2c) receptor antagonists, did not alter BDNF`s effects on escape. Bicuculline also blocked the inhibitory effect of BDNF on mean arterial pressure increase caused by electrical stimulation of DPAG. Therefore, in the DPAG, BDNF-TrkB signalling interacts with the GABAergic system to cause a panicolytic-like effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of 5-HT2C receptors in limbic structures such as the amygdala and hippocampus increases anxiety. Indirect evidence obtained with non-selective 5-HT2C-interacting drugs suggests that the same may occur in the dPAG, a brainstem region consistently implicated in the genesis/regulation of panic attacks. In this study we used more selective agonists and antagonists to unveil the role played by dPAG 5-HT2C receptors in the regulation of anxiety- and panic-related defensive behaviors. Our results showed that intra-dPAG microinjection of the endogenous agonist 5-HT (20 nmol) or the 5-HT2C receptor agonists MK-212 (1 and 10 nmol) and RO-600175 (40 nmol) significantly increased inhibitory avoidance acquisition in rats tested in the elevated T-maze, suggesting an anxiogenic effect. 5-HT, but not the two 5-HT2C receptor agonists, inhibited escape performance. In the elevated T-maze, inhibitory avoidance and escape responses have been related to generalized anxiety and panic attacks, respectively. The behavioral effects caused by 5-HT and MK-212 were fully blocked by previous local microinjection of the 5-HT2C receptor antagonist SB-242084. Intra-dPAG injection of MK-212 also failed to affect escape expression in another test relating this behavior to panic, the electrical stimulation of the dPAG. Overall, the results indicate that 5-HT2C receptors in the dPAG are preferentially involved in the regulation of defensive behaviors related to anxiety, but not panic. This finding extends to the dPAG the prominent role that has been attributed to 5-HT2C receptors in anxiety generation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serotonin (5-HT) is involved in the fine adjustments at several brain centers including the core of the mammal circadian timing system (CTS) and the hypothalamic suprachiasmatic nucleus (SCN). The SCN receives massive serotonergic projections from the midbrain raphe nuclei, whose inputs are described in rats as ramifying at its ventral portion overlapping the retinohypothalamic and geniculohypothalamic fibers. In the SCN, the 5-HT actions are reported as being primarily mediated by the 5-HT1 type receptor with noted emphasis for 5-HT(1B) subtype, supposedly modulating the retinal input in a presynaptic way. In this study in a New World primate species, the common marmoset (Callithrix jacchus), we showed the 5-HT(1B) receptor distribution at the dorsal SCN concurrent with a distinctive location of 5-HT-immunoreactive fibers. This finding addresses to a new discussion on the regulation and synchronization of the circadian rhythms in recent primates. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arylpiperazine compounds are promising 5-HT1A receptor ligands that can contribute for accelerating the onset of therapeutic effect of selective serotonin reuptake inhibitors. In the present work, the chemometric methods HCA, PCA, KNN, SIMCA and PLS were employed in order to obtain SAR and QSAR models relating the structures of arylpiperazine compounds to their 5-HT1A receptor affinities. A training set of 52 compounds was used to construct the models and the best ones were obtained with nine topological descriptors. The classification and regression models were externally validated by means of predictions for a test set of 14 compounds and have presented good quality, as verified by the correctness of classifications, in the case of pattern recognition studies, and b, the high correlation coefficients (q(2) = 0.76, r(2) = 0.83) and small prediction errors for the PLS regression. Since the results are in good agreement with previous SAR studies, we can suggest that these findings can help in the search for 5-HT1A receptor ligands that are able to improve antidepressant treatment. (c) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT1A autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT1A receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT1A receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F7,63 = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT1A receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distrofia muscular de Duchenne (DMD) é uma alteração neuromuscular caracterizada por contínua necrose muscular e degeneração, com eventual fibrose e infiltração por tecido adiposo. O aumento progressivo da fibrose intersticial no músculo impede a migração das células miogênicas, necessárias para a formação muscular. O modelo canino constitui-se nas melhores fenocópias da doença em humanos, quando comparados com outros modelos animais com distrofia. O tratamento antifibrose de pacientes DMD, tendo como alvo os mediadores da citocina, TGF-beta, e o tratamento com antiinflamatórios, podem limitar a degeneração muscular e contribuir para a melhora do curso da doença. O presente estudo teve como objetivo observar os possíveis efeitos adversos na fisiologia renal, por meio de avaliação bioquímica sanguínea e da pressão arterial, verificando a viabilidade do uso do Losartan (um inibidor de TGF-beta) nos cães afetados pela distrofia muscular. Foram utilizados quatro cães adultos, sendo dois machos e duas fêmeas. Utilizou-se a dose de 50mg de Losartan, administrada via oral, uma vez ao dia. Os exames clínicos, bem como alterações na função renal, o nível do potássio sérico e a pressão arterial não evidenciaram reação adversa durante todo o período do experimento. O uso de Losartan, por um período de 9 semanas, mostrou-se como uma terapia segura para o tratamento antifibrótico em cães adultos, não afetando a função renal ou pressão arterial dos animais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The systemic aspect of vascular damage induced by angiotensin II (ANG II) has been poorly explored in the literature. Considering the presence of ANG II and its specific receptor AT1, in several organs, all tissues might be potentially affected by its effects. The aims of this study were: To evaluate the early histological changes in the heart, liver and kidneys, produced by ANG II infusion, to evaluate the protective effect of losartan. Wistar rats were distributed into three groups: control (no treatment), treated with ANG II, and treated with ANG II + losartan. ANG II was continuously infused over 72 hours by subcutaneous osmotic pumps. Histological sections of the myocardium, kidneys and liver were stained and observed for the presence of necrosis. There were ANG II-induced perivascular inflammation and necrosis of the arteriolar wall in the myocardium, kidney, and liver by, which were partially prevented by losartan. There was no significant correlation between heart and kidney damage. Tissue lesion severity was lower than that of vascular lesions, without statistical difference between groups. ANG II causes vascular injury in the heart, kidneys and liver, indicating a systemic vasculotoxic effect; the mechanisms of damage/protection vary depending on the target organ; perivascular lesions may occur even when anti-hypertensive doses of losartan are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Toll-like receptor 4 (TLR4) is widely recognized as an essential element in the triggering of innate immunity, binding pathogen-associated molecules such as Lipopolysaccharide (LPS), and in initiating a cascade of pro-inflammatory events. Evidence for TLR4 expression in non-immune cells, including pancreatic beta-cells, has been shown, but, the functional role of TLR4 in the physiology of human pancreatic beta-cells is still to be clearly established. We investigated whether TLR4 is present in beta-cells purified from freshly isolated human islets and confirmed the results using MIN6 mouse insulinoma cells, by analyzing the effects of TLR4 expression on cell viability and insulin homeostasis. Results: CD11b positive macrophages were practically absent from isolated human islets obtained from nondiabetic brain-dead donors, and TLR4 mRNA and cell surface expression were restricted to beta-cells. A significant loss of cell viability was observed in these beta-cells indicating a possible relationship with TLR4 expression. Monitoring gene expression in beta-cells exposed for 48h to the prototypical TLR4 ligand LPS showed a concentration-dependent increase in TLR4 and CD14 transcripts and decreased insulin content and secretion. TLR4-positive MIN6 cells were also LPS-responsive, increasing TLR4 and CD14 mRNA levels and decreasing cell viability and insulin content. Conclusions: Taken together, our data indicate a novel function for TLR4 as a molecule capable of altering homeostasis of pancreatic beta-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-22 (IL-22) is a class 2 cytokine whose primary structure is similar to that of interleukin 10 (IL-10) and interferon-gamma (IFN-gamma). IL-22 induction during acute phase immune response indicates its involvement in mechanisms of inflammation. Structurally different from IL-10 and a number of other members of IL-10 family, which form intertwined inseparable V-shaped dimers of two identical polypeptide chains, a single polypeptide chain of IL-22 folds on itself in a relatively globular structure. Here we present evidence, based on native gel electrophoresis, glutaraldehyde cross-linking, dynamic light scattering, and small angle x-ray scattering experiments, that human IL-22 forms dimers and tetramers in solution under protein concentrations assessable by these experiments. Unexpectedly, low-resolution molecular shape of IL-22 dimers is strikingly similar to that of IL-10 and other intertwined cytokine dimeric forms. Furthermore, we determine an ab initio molecular shape of the IL-22/IL-22R1 complex which reveals the V-shaped IL-22 dimer interacting with two cognate IL-22R1 molecules. Based on this collective evidence, we argue that dimerization might be a common mechanism of all class 2 cytokines for the molecular recognition with their respective membrane receptor. We also speculate that the IL-22 tetramer formation could represent a way to store the cytokine in nonactive form at high concentrations that could be readily converted into functionally active monomers and dimers upon interaction with the cognate cellular receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reprogramming of somatic cells to pluripotency promises to boost cellular therapy. Most instances of direct reprogramming have been achieved by forced expression of defined exogenous factors using multiple viral vectors. The most used 4 transcription factors, octamer-binding transcription factor 4 (OCT4), (sex determining region Y)-box 2 (SOX2), Kruppel-like factor 4 (KLF4), and v-myc myelocytomatosis viral oncogene homolog (C-MYC), can induce pluripotency in mouse and human fibroblasts. Here, we report that forced expression of a new combination of transcription factors (T-cell leukemia/lymphoma protein 1A [TCL-1A], C-MYC, and SOX2) is sufficient to promote the reprogramming of human fibroblasts into pluripotent cells. These 3-factor pluripotent cells are similar to human embryonic stem cells in morphology, in the ability to differentiate into cells of the 3 embryonic layers, and at the level of global gene expression. Induced pluripotent human cells generated by a combination of other factors will be of great help for the understanding of reprogramming pathways. This, in turn, will allow us to better control cell-fate and apply this knowledge to cell therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Thyroid receptors, TRa and TR beta, are involved in important physiological functions such as metabolism, cholesterol level and heart activities. Whereas metabolism increase and cholesterol level lowering could be achieved by TR beta isoform activation, TRa activation affects heart rates. Therefore, beta-selective thyromimetics have been developed as promising drug-candidates for treatment of obesity and elevated cholesterol level. GC-1 [ 3,5-dimethyl-4-(4'-hydroxy- 3'-isopropylbenzyl)-phenoxy acetic acid] has ability to lower LDL cholesterol with 600-to 1400-fold more potency and approximately two-to threefold more efficacy than atorvastatin (Lipitor(C)) in studies in rats, mice and monkeys. Results: To investigate GC-1 specificity, we solved crystal structures and performed molecular dynamics simulations of both isoforms complexed with GC-1. Crystal structures reveal that, in TRa Arg228 is observed in multiple conformations, an effect triggered by the differences in the interactions between GC-1 and Ser277 or the corresponding asparagine (Asn331) of TR beta. The corresponding Arg282 of TR beta is observed in only one single stable conformation, interacting effectively with the ligand. Molecular dynamics support this model: our simulations show that the multiple conformations can be observed for the Arg228 in TR alpha, in which the ligand interacts either strongly with the ligand or with the Ser277 residue. In contrast, a single stable Arg282 conformation is observed for TR beta, in which it strongly interacts with both GC-1 and the Asn331. Conclusion: Our analysis suggests that the key factors for GC-1 selectivity are the presence of an oxyacetic acid ester oxygen and the absence of the amino group relative to T(3). These results shed light into the beta-selectivity of GC-1 and may assist the development of new compounds with potential as drug candidates to the treatment of hypercholesterolemia and obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Preconception allergen immunization prevents neonatal allergen sensitization in mice by a complex interaction between regulatory cells/factors and antibodies. The present study assessed the influence of maternal immunization with ovalbumin (OVA) on the immune response of 3 day-old and 3 week-old offspring immunized or non-immunized with OVA and evaluated the effect of IgG treatment during fetal development or neonatal period. Results: Maternal immunization with OVA showed increased levels of Fc gamma RIIb expression in splenic B cells of neonates, which were maintained for up to 3 weeks and not affected by additional postnatal OVA immunization. Maternal immunization also exerted a down-modulatory effect on both IL-4 and IFN-gamma-secreting T cells and IL-4 and IL-12-secreting B cells. Furthermore, immunized neonates from immunized mothers showed a marked inhibition of antigen-specifc IgE Ab production and lowered Th2/Th1 cytokine levels, whereas displaying enhanced Fc gamma RIIb expression on B cells. These offspring also showed reduced antigen-specific proliferative response and lowered B cell responsiveness. Moreover, in vitro evaluation revealed an impairment of B cell activation upon engagement of B cell antigen receptor by IgG from OVA-immunized mice. Finally, in vivo IgG transference during pregnancy or breastfeeding revealed that maternal Ab transference was able to increase regulatory cytokines, such as IL-10, in the prenatal stage; yet only the postnatal treatment prevented neonatal sensitization. None of the IgG treatments induced immunological changes in the offspring, as it was observed for those from OVA-immunized mothers. Conclusion: Maternal immunization upregulates the inhibitory Fc gamma RIIb expression on offspring B cells, avoiding skewed Th2 response and development of allergy. These findings contribute to the advancement of prophylactic strategies to prevent allergic diseases in early life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Descending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical paw incision. Results: The number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 5-HT(1/2B/2C) (methysergide), 5-HT(2A) (ketanserin) or 5-HT(1/2A/2C/5/6/7) (methiothepin) receptors antagonists, in the ipsilateral lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the lamina X by LY 278,584, ketanserin or methiothepin. Conclusions: We conclude: (1) muscarinic cholinergic mechanisms reduce incision-induced response of spinal neurons inputs from the contralateral paw; (2) 5-HT(1/2A/2C/3) receptors-mediate mechanisms increase the activity of descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3) 5-HT(1/2A/2C) and 5-HT(1/2C) receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral paw; (4) 5-HT(2A/3) receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; (5) alpha-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short chain fatty acids (SCFAs) have recently attracted attention as potential mediators of the effects of gut microbiota on intestinal inflammation. Some of these effects have been suggested to occur through the direct actions of SCFAs on the GPR43 receptor in neutrophils, though the precise role of this receptor in neutrophil activation is still unclear. We show that mouse bone marrow derived neutrophils (BMNs) can chemotax effectively through polycarbonate filters towards a source of acetate, propionate or butyrate. Moreover, we show that BMNs move with good speed and directionality towards a source of propionate in an EZ-Taxiscan chamber coated with fibrinogen. These effects of SCFAs were mimicked by low concentrations of the synthetic GPR43 agonist phenylacetamide-1 and were abolished in GPR43(-/-) BMNs. SCFAs and phenylacetamide-1 also elicited GPR43-dependent activation of PKB, p38 and ERK and these responses were sensitive to pertussis toxin, indicating a role for Gi proteins. Phenylacetamide-1 also elicited rapid and transient activation of Rac1/2 GTPases and phosphorylation of ribosomal protein S6. Genetic and pharmacological intervention identified important roles for PI3K gamma, Rac2, p38 and ERK, but not mTOR, in GPR43-dependent chemotaxis. These results identify GPR43 as a bona fide chemotactic receptor for neutrophils in vitro and start to define important elements in its signal transduction pathways.