51 resultados para Rectangular Waveguide
Resumo:
This work presents for the first time to our knowledge the fabrication and characterization of rib waveguides produced with PbO-GeO(2) (PGO) thin films. The target was manufactured using pure oxides ( 60 PbO-40 GeO(2), in wt%) and amorphous thin films were produced with the RF sputtering technique. PGO thin films present small absorption in the visible and in the near infrared and refractive index of similar to 2.0. The definition of the rib waveguide structure was made using conventional optical lithography followed by plasma etching, performed in a Reactive Ion Etching (RIE) reactor. Light propagation mode in the waveguide structure was analyzed using integrated optic simulation software. Optical loss measurements were performed to determine the propagation loss at 633 nm, for ribs with height of 70 nm and width of 3-5 mu m; experimental values around 2 dB/cm were found for the propagation loss and confirmed the theoretical calculations. The results obtained demonstrate that PGO thin films are potential candidates for application in integrated optics. Published by Elsevier B.V.
Resumo:
The electrochemical performance of carbon fibers (CF) and boron-doped diamond electrodes grown on carbon fiber substrate (BDD/CF) was studied. CF substrates were obtained from polyacrylonitrile precursor heat treated at two different temperatures of 1000 and 2000 degrees C to produce the desirable CF carbon graphitization index. This graphitization process influenced the CF conductivity and its chemical surface, also analyzed from X-ray photoelectron spectroscopy measurements. These three-dimensional CF structures allowed a high incorporation of diamond films compared to other carbon substrates such as glass carbon or HOPG. The electrochemical responses, from these four classes of electrodes, were evaluated focusing their application as electrical double-layer capacitors using cyclic voltammetry and impedance measurements. Cyclic voltammetry results revealed that the electrode formed from BDD grown on CF-2000 presented a typical capacitor behavior with the best rectangular shape, compared to those electrodes of CF or BDD/CF-1000. Furthermore, the BDD/CF-2000 electrode presented the lowest impedance, associated to its significant capacitance value of 1940 mu F/cm(2) taking into account the BDD films. This behavior was attributed to the strong dependence between diamond coating texture and the CF graphitization temperature. The largest surface area of BDD/CF-2000 was promoted by its singular film growth mechanism associated to the substrate chemical surface. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Luminescent Eu(3+) and Er(3+) doped SnO(2) powders have been prepared by Sn(4+) hydrolysis followed by a controlled growth reaction using a particle`s surface modifier in order to avoid particles aggregation. The powders so obtained doped with up to 2 mol% rare earth ions are fully redispersable in water at pH > 8 and present the cassiterite structure. Particles size range from 3 to 10 nm as determined by Photon Correlation Spectroscopy. Rare earth ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn(4+), for doping concentration smaller than 0.05 mol%. For higher concentration they are also located at the particles surface. The presence of Eu(3+) ions at the surface of the particles hinder their growth and has therefore allowed the preparation of new materials consisting of water redispersable powders coated with Eu(3+)-beta dike-tonate complexes. Enhanced UV excited photoluminescence was observed in water. SnO(2) single layers with thickness up to 200 nm and multilayer coatings were spin coated on borosilicate glass substrates from the colloidal suspensions. Waveguiding properties were evaluated by the prism coupling technique. For a 0.3 mu m planar waveguide single propagating mode was observed with attenuation coefficient of 3.5 dB/cm at 632.8 nm.
Resumo:
This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To test the hypothesis that ruptured abdominal aortic aneurysms (AAA) are globally weaker than unruptured ones. Methods: Four ruptured and seven unruptured AAA specimens were harvested whole from fresh cadavers during autopsies performed over an 18-month period. Multiple regionally distributed longitudinally oriented rectangular strips were cut from each AAA specimen for a total of 77 specimen strips. Strips were subjected to uniaxial extension until failure. Sections from approximately the strongest and weakest specimen strips were studied histologically and histochemically. From the load-extension data, failure tension, failure stress and failure strain were calculated. Rupture site characteristics such as location, arc length of rupture and orientation of rupture were also documented. Results: The failure tension, a measure of the tissue mechanical caliber was remarkably similar between ruptured and unruptured AAA (group mean +/- standard deviation of within-subject means: 11.2 +/- 2.3 versus 11.6 +/- 3.6 N/cin; p=0.866 by mixed model ANOVA). In post-hoc analysis, there was little difference between the groups in other measures of tissue mechanical caliber as well such as failure stress (95 +/- 28 versus 98 +/- 23 N/cm(2); p=0.870), failure strain (0.39 +/- 0.09 versus 0.36 +/- 0.09; p=0.705), wall thickness (1.7 +/- 0.4 versus 1.5 +/- 0.4 mm; p=0.470), and % coverage of collagen within tissue cross section (49.6 +/- 12.9% versus 60.8 +/- 9.6%; p=0.133). In the four ruptured AAA, primary rupture sites were on the lateral quadrants (two on left; one on left-posterior; one on right). Remarkably, all rupture lines had a longitudinal orientation and ranged from 1 to 6 cm in length. Conclusion: The findings are not consistent with the hypothesis that ruptured aortic aneurysms are globally weaker than unruptured ones. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: This study was conducted to investigate the success rate of using the facial motor evoked potential (FMEP) of orbicularis oculi and oris muscles for facial nerve function monitoring with use of a stepwise protocol, and its usefulness in predicting facial nerve outcome during cerebellopontine angle (CPA) surgeries. METHODS: FMEPs were recorded intraoperatively from 60 patients undergoing CPA surgeries. Transcranial electrocortical stimulation (TES) was performed using corkscrew electrodes positioned at hemispheric montage (C3/C4 and CZ). The contralateral abductor pollicis brevis muscle was used as the control response. Stimulation was always applied contralaterally to the affected side using 1, 3, or 5 rectangular pulses ranging from 200 to 600 V with 50 mu s of pulse duration and an interstimulus interval of 2 ms. Facial potentials were recorded from needles placed in the orbicularis oculi and oris muscles. RESULTS: FMEP from the orbicularis oris and oculi muscles could be reliably monitored in 86.7% and 85% of the patients, respectively. The immediate postoperative facial function correlated significantly with the FMEP ratio in the orbicularis oculi muscle at 80% amplitude ratio (P =.037) and orbicularis oris muscle at 35% ratio (P =.000). FMEP loss was always related to postoperative facial paresis, although in different degrees. CONCLUSION: FMEPs can be obtained reliably by using TES with 3 to 5 train pulses. Stable intraoperative FMEPs can predict a good postoperative outcome of facial function. However, further refinements of this technique are necessary to minimize artifacts and to make this method more reliable.
Resumo:
Objectives: To evaluate the influence of two surface sealants (BisCover/Single Bond) and three application techniques (unsealed/conventional/co-polymerization) on the roughness of two composites (Filtek Z250/Z350) after the toothbrushing test. Methods: Seventy-two rectangular specimens (5 mm x 10 mm x 3 mm) were fabricated and assigned into 12 groups (n = 6). Each sample was subjected to three random roughness readings at baseline, after 100,000 (intermediate), and 200,000 (final) toothbrushing strokes. Roughness (R) at each stage was obtained by the arithmetic mean of the reading of each specimen. Sealant removal was qualitatively examined (optical microscope) and classified into scores (0-3). Data were analyzed by Student`s paired t-test, two-way ANOVA/Tukey`s test, and by Wilcoxon, Kruskal-Wallis and Miller`s test (alpha = 0.05). Results: Z250 groups at baseline did not differ statistically from each other. Unsealed Z350 at baseline had lower R values. All the unsealed groups presented gradual decrease in R from baseline to final brushing. From baseline to the inter-mediate stage, Z250 co-polymerized groups presented a significant reduction in R (score 3). Conventionally sealed groups had no significant changes in R (scores 2-0.8). From baseline to the intermediate stage, the conventionally sealed Z350 Single Bond group had an increase in R (score 1.5). In the final stage, all the conventionally sealed groups presented a reduction in R (scores 0.7-0). Co-polymerized Single Bond groups had a significant reduction in R (scores 2.5-2.7), and co-polymerized BisCover groups an increase in R (scores 2.8-3). Conclusions: At any brushing stage, sealed composites presented superior performance when compared with unsealed composites. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: This study evaluated the effect of different concentrations of ethanol on hardness, roughness, flexural strength, and color stability of a denture base material using a microwave-processed acrylic resin as a model system. Materials and Methods: Sixty circular (14 x 4 mm) and 60 rectangular microwave-polymerized acrylic resin specimens (65 x 10 x 3 mm(3)) were employed in this study. The sample was divided into six groups according to the ethanol concentrations used in the immersion solution, as follows: 0% (water), 4.5%, 10%, 19%, 42%, and 100%. The specimens remained immersed for 30 days at 37 degrees C. The hardness test was performed by a hardness tester equipped with a Vickers diamond penetrator, and a surface roughness tester was used to measure the surface roughness of the specimens. Flexural strength testing was carried out on a universal testing machine. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 30 days. Variables were analyzed by ANOVA/Tukey`s test (alpha = 0.05). Results: For the range of ethanol-water solutions for immersion (water only, 4.5%, 10%, 19.5%, 42%, and 100%), the following results were obtained for hardness (13.9 +/- 2.0, 12.1 +/- 0.7, 12.9 +/- 0.9, 11.2 +/- 1.5, 5.7 +/- 0.3, 2.7 +/- 0.5 VHN), roughness (0.13 +/- 0.01, 0.15 +/- 0.07, 0.13 +/- 0.05, 0.13 +/- 0.02, 0.23 +/- 0.05, 0.41 +/- 0.19 mu m), flexural strength (90 +/- 12, 103 +/- 18, 107 +/- 16, 90 +/- 25, 86 +/- 22, 8 +/- 2 MPa), and color (0.8 +/- 0.6, 0.8 +/- 0.3, 0.7 +/- 0.4, 0.9 +/- 0.3, 1.3 +/- 0.3, 3.9 +/- 1.5 Delta E) after 30 days. Conclusions: The findings of this study showed that the ethanol concentrations of tested drinks affect the physical properties of the investigated acrylic resin. An obvious plasticizing effect was found, which could lead to a lower in vivo durability associated with alcohol consumption.
Resumo:
Purpose: This study evaluated the effect of the incorporation of the antimicrobial monomer methacryloyloxyundecylpyridinium bromide (MUPB) on the hardness, roughness, flexural strength, and color stability of a denture base material. Materials and Methods: Ninety-six disk-shaped (14-mm diameter x 4-mm thick) and 30 rectangular (65 x 10 x 3.3 mm(3)) heat-polymerized acrylic resin specimens were divided into three groups according to the concentration of MUPB (w/w): (A) 0%, (B) 0.3%, (C) 0.6%. Hardness was assessed by a hardness tester equipped with a Vickers diamond penetrator. Flexural strength and surface roughness were tested on a universal testing machine and a surface roughness tester, respectively. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 36 days of immersion in water, coffee, or wine. Variables were analyzed by ANOVA/Tukey HSD test (alpha = 0.05). Results: The following mean results (+/-SD) were obtained for hardness (A: 15.6 +/- 0.6, B: 14.6 +/- 1.7, C: 14.8 +/- 0.8 VHN; ANOVA: p = 0.061), flexural strength (A: 111 +/- 17, B: 105 +/- 12, C: 88 +/- 12 MPa; ANOVA: p = 0.008), and roughness (A: 0.20 +/- 0.11, B: 0.20 +/- 0.11, C: 0.24 +/- 0.08 mu m; ANOVA: p = 0.829). Color changes of immersed specimens were significantly influenced by solutions and time (A: 9.1 +/- 3.1, B: 14.8 +/- 7.5, C: 13.3 +/- 6.1 Delta E; ANOVA: p < 0.05). Conclusions: The incorporation of MUPB affects the mechanical properties of a denture base acrylic resin; however, the only significant change was observed for flexural strength and may not be critical. Color changes were slightly higher when resin containing MUPB was immersed in wine for a prolonged time; however, the difference has debatable clinical relevance.
Resumo:
Objective: The purpose of this in vitro study was to evaluate the antimicrobial activity of acrylic resins containing different percentages of silver and zinc zeolite, and to assess whether the addition of zeolite alters the flexural and impact strength of the resins. Background: The characteristics of acrylic resins support microorganism development that can threaten the health of the dentures user. Material and methods: A microwave-polymerised (Onda-Cryl) and two heat-polymerised (QC20 and Lucitone 550) acrylic resins were used. The materials were handled according to the manufacturers` instructions. Fifty rectangular-shaped specimens (8 x 10 x 4mm) were fabricated from each resin and assigned to 5 groups (n = 10) according to their percentage of Irgaguard B5000 silver-zinc zeolite (0%- control, 2.5%, 5.0%, 7.5% and 10%). Flexural strength and Izod impact strength were evaluated. The antimicrobial activity against two strains of Candida albicans and two strains of Streptococcus mutans was assessed by agar diffusion method. Data were analysed statistically by one-way ANOVA and Tukey`s test at 5% significance level. Results: The addition of 2.5% of Irgaguard B5000 to the materials resulted in antimicrobial activity against all strains. Flexural strength decreased significantly with the addition of 2.5% (QC20 and Lucitone 550) and 5.0% (Onda-Cryl) of Irgaguard B5000. The impact strength decreased significantly with the addition of 2.5% (Lucitone 550) and 5.0% (QC20 and Onda-Cryl) of zeolite. Conclusion: The addition of silver-zinc zeolite to acrylic resins yields antimicrobial activity, but may affect negatively the mechanical properties, depending on the percentage of zeolite.
Resumo:
Background: The method of porosity analysis by water absorption has been carried out by the storage of the specimens in pure water, but it does not exclude the potential plasticising effect of the water generating unreal values of porosity. Objective: The present study evaluated the reliability of this method of porosity analysis in polymethylmethacrylate denture base resins by the determination of the most satisfactory solution for storage (S), where the plasticising effect was excluded. Materials and methods: Two specimen shapes (rectangular and maxillary denture base) and two denture base resins, water bath-polymerised (Classico) and microwave-polymerised (Acron MC) were used. Saturated anhydrous calcium chloride solutions (25%, 50%, 75%) and distilled water were used for specimen storage. Sorption isotherms were used to determine S. Porosity factor (PF) and diffusion coefficient (D) were calculated within S and for the groups stored in distilled water. anova and Tukey tests were performed to identify significant differences in PF results and Kruskal-Wallis test and Dunn multiple comparison post hoc test, for D results (alpha = 0.05). Results: For Acron MC denture base shape, FP results were 0.24% (S 50%) and 1.37% (distilled water); for rectangular shape FP was 0.35% (S 75%) and 0.19% (distilled water). For Classico denture base shape, FP results were 0.54% (S 75%) and 1.21% (distilled water); for rectangular shape FP was 0.7% (S 50%) and 1.32% (distilled water). FP results were similar in S and distilled water only for Acron MC rectangular shape (p > 0.05). D results in distilled water were statistically higher than S for all groups. Conclusions: The results of the study suggest that an adequate solution for storing specimens must be used to measure porosity by water absorption, based on excluding the plasticising effect.
Resumo:
The aim of this preliminary work was to present a novel method, suitable to investigate the glass cooling, from melt to solid state, based on a fast, non-usual and easy microwave method. The following glass system xBaO . (100-x)B(2)O(3) (x = 0% and 40%) was selected as an example for this study. The melt was poured inside a piece of waveguide and then, its cooling was monitored by the microwave signal as a function of time. The variations in the signal can provide valuable informations about some structural changes that take place during the cooling stages, such as relaxation processes. This method can be useful to investigate the cooling and heating of other materials, opening new possibilities for investigation of dielectric behavior of materials under high temperatures. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we construct a dynamic portrait of the inner asteroidal belt. We use information about the distribution of test particles, which were initially placed on a perfectly rectangular grid of initial conditions, after 4.2 Myr of gravitational interactions with the Sun and five planets, from Mars to Neptune. Using the spectral analysis method introduced by Michtchenko et al., the asteroidal behaviour is illustrated in detail on the dynamical, averaged and frequency maps. On the averaged and frequency maps, we superpose information on the proper elements and proper frequencies of real objects, extracted from the data base, AstDyS, constructed by Milani and Knezevic. A comparison of the maps with the distribution of real objects allows us to detect possible dynamical mechanisms acting in the domain under study; these mechanisms are related to mean-motion and secular resonances. We note that the two- and three-body mean-motion resonances and the secular resonances (strong linear and weaker non-linear) have an important role in the diffusive transportation of the objects. Their long-lasting action, overlaid with the Yarkovsky effect, may explain many observed features of the density, size and taxonomic distributions of the asteroids.
Resumo:
We study the effect of the soft confinement by fluid lipid bilayers on the spatial organisation of DNA molecules in a DNA-zwitterionic lipid hydrated lamellar complex. The confinement is increased by dehydrating the complex in a controlled way, which leads to a decrease of the water channel thickness separating the periodically stacked bilayers. Using grazing-incidence small-angle X-ray scattering on an oriented thin film, we probe in situ as dehydration proceeds the structure of the DNA-lipid complex. A structural phase transition is evidenced, where an apparently disordered phase of DNA rods embedded within the one-dimensionally ordered lipid lamellar phase observed at high hydration is replaced by a 2D hexagonal structure of DNA molecules intercalated between the lipid bilayers. Copyright (C) EPLA, 2010
Resumo:
The present work shows the growth of nordstrandile microcrystals observed by transmission and scanning electron microscopy. Nordstrandite was synthesised from non-crystalline aluminium hydroxide reacted in 20% ethylene glycol/water solution, at room temperature. This material was characterized by TEM, SEM, SAED, XRD and EDS/TEM, during six month and revealed the formation and growth of nordstrandite. Fibrillar pseudoboehmite is the only aluminium hydroxide which could be identified during the first two weeks. The nuclei grow, from complete dissolution/recrystallization of pseudoboehmite fibrils, into platy rectangular microscrystals of nordstrandite. Some tabular microcrystals recrystallise, forming after six months only the mufti-point nordstrandite stars. This electron-optical study suggest that the star shape results from the overlapping of rectangular plates, and pseudoboehmite fibrils act as the precursor of nordstrandite crystallisation in ethylene glycol/water solution.