72 resultados para REVERSIBLE ADP-RIBOSYLATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clavulanic acid (CA) is a potent inhibitor of beta-lactamases, produced by some resistant pathogenic microorganisms, which allows efficient treatment of infectious diseases. The kinetic and thermodynamic parameters of CA production by a new isolate of Streptomyces DAUFPE 3060 and its degradation were evaluated. The effect of temperature on the system was investigated in the range 24-40 degrees C adopting an overall model accounting for (a) the Arrhenius-type formation of CA by fermentation, (b) the hypothetical reversible unfolding of the enzyme limiting the overall metabolism, and (c) the irreversible first-order degradation of CA. The higher rates of CA formation (k(CA) = 0,107 h(-1)) and degradation (k(d) = 0.062 h(-1)) were observed at 32 and 40 degrees C, respectively. The main thermodynamic parameters of the three above hypothesized events were estimated. In particular, the activation parameters of degradation (activation energy = 39.0 kJ/mol; Delta H(d)* = 36.5 kJ/mol; Delta S(d)* = -219.7 J/(mol K); Delta G(d)* = 103.5 kJ/mol) compare reasonably well with those reported in the literature for similar system without taking into account the other two events. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clavulanic acid (CA) is a beta-lactam antibiotic that alone exhibits only weak antibacterial activity, but is a potent inhibitor of beta-lactamases enzymes. For this reason it is used as a therapeutic in conjunction with penicillins and cephalosporins. However, it is a well-known fact that it is unstable not only during its production phase, but also during downstream processing. Therefore, the main objective of this study was the evaluation of CA long-term stability under different conditions of pH and temperature, in the presence of variable levels of different salts, so as to suggest the best conditions to perform its simultaneous production and recovery by two-phase polymer/salt liquid-liquid extractive fermentation. To this purpose, the CA stability was investigated at different values of pH (4.0-8.0) and temperature (20-45 degrees C), and the best conditions were met at a pH 6.0-7.2 and 20 degrees C. Its stability was also investigated at 30 degrees C in the presence of NaCl, Na(2)SO(4), CaCl(2) and MgSO(4) at concentrations of 0.1 and 0.5 M in Mcllvaine buffer (pH 6.5). All salts led to increased CA instability with respect to the buffer alone, and this effect decreased in following sequence: Na(2)SO(4) > MgSO(4) > CaCl(2) > NaCl. Kinetic and thermodynamic parameters of CA degradation were calculated adopting a new model that took into consideration the equilibrium between the active and a reversibly inactivated form of CA after long-time degradation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phospholipase A(2) (PLA(2), EC 3.1.1.4), a major component of snake venoms, specifically catalyzes the hydrolysis of fatty acid ester bonds at position 2 of 1,2-diacyl-sn-3-phosphoglycerides in the presence of calcium. This article reports the purification and biochemical/functional characterization of BmooTX-I, a new myotoxic acidic phospholipase A(2) from Bothrops moojeni snake venom. The purification of the enzyme was carried out through three chromatographic steps (ion-exchange on DEAE-Sepharose, molecular exclusion on Sephadex G-75 and hydrophobic chromatography on Phenyl-Sepharose). BmooTX-I was found to be a single-chain protein of 15,000 Da and pI 4.2. The N-terminal sequence revealed a high homology with other acidic Asp49 PLA(2)S from Bothrops snake venoms. It displayed a high phospholipase activity and platelet aggregation inhibition induced by collagen or ADP. Edema and myotoxicity in vivo were also induced by BmooTX-I. Analysis of myotoxic activity was carried out by optical and ultrastructural microscopy, demonstrating high levels of leukocytary infiltrate. Previous treatment of BmooTX-1 with BPB reduced its enzymatic and myotoxic activities, as well as the effect on platelet aggregation. Acidic myotoxic PLA(2)S from Bothrops snake venoms have been little explored and the knowledge of its structural and functional features will be able to contribute for a better understanding of their action mechanism regarding enzymatic and toxic activities. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polymetallic [Ru(3)O(CH(3)COO)(6)(py)(2)(BPE)Ru( bpy)(2)Cl](PF(6))(2) complex (bpy = 2,2`-bipyridine, BPE = trans- 1,2-bis(4-pyridil) ethylene and py = pyridine) was assembled by the combination of an electroactive [Ru(3)O] moiety with a [ Ru( bpy) 2( BPE) Cl] photoactive centre, and its structure was determined using positive ion electrospray (ESI-MS) and tandem mass (ESI-MS/MS) spectrometry. The [Ru(3)O(CH(3)COO)(6)(py)(2)(BPE)Ru(bpy)(2)Cl] (2+) doubly charged ion of m/z 732 was mass-selected and subject to 15 eV collision-induced dissociation, leading to a specific dissociation pattern, diagnostic of the complex structure. The electronic spectra display broad bands at 409, 491 and 692 nm ascribed to the [Ru(bpy)(2)(BPE)] charge-transfer bands and to the [Ru(3)O] internal cluster transitions. The cyclic voltammetry shows five reversible waves at - 1.07 V, 0.13 V, 1.17 V, 2.91 V and - 1.29 V (vs SHE) assigned to the [Ru(3)O](-1/0/+ 1/+ 2/+3) and to the bpy (0/-1) redox processes; also a wave is observed at 0.96 V, assigned to the Ru (+2/+ 3) pair. Despite the conjugated BPE bridge, the electrochemical and spectroelectrochemical results indicate only a weak coupling through the pi-system, and preliminary photophysical essays showed the compound decomposes under visible light irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differences between the respiratory chain of the fungus Paracoccidioides brasiliensis and its mammalian host are reported. Respiration, membrane potential, and oxidative phosphorylation in mitochondria from P. brasiliensis spheroplasts were evaluated in situ, and the presence of a complete (Complex I-V) functional respiratory chain was demonstrated. In succinate-energized mitochondria, ADP induced a transition from resting to phosphorylating respiration. The presence of an alternative NADH-ubiquinone oxidoreductase was indicated by: (i) the ability to oxidize exogenous NADH and (ii) the lack of sensitivity to rotenone and presence of sensitivity to flavone. Malate/NAD(+)-supported respiration suggested the presence of either a mitochondrial pyridine transporter or a glyoxylate pathway contributing to NADH and/or succinate production. Partial sensitivity of NADH/succinate-supported respiration to antimycin A and cyanide, as well as sensitivity to benzohydroxamic acids, suggested the presence of an alternative oxidase in the yeast form of the fungus. An increase in activity and gene expression of the alternative NADH dehydrogenase throughout the yeast`s exponential growth phase was observed. This increase was coupled with a decrease in Complex I activity and gene expression of its subunit 6. These results support the existence of alternative respiratory chain pathways in addition to Complex I, as well as the utilization of NADH-linked substrates by P. brasiliensis. These specific components of the respiratory chain could be useful for further research and development of pharmacological agents against the fungus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports on the bimolecular sensitization of nitric oxide release from cis-[Ru(bpy)(2)(iso)-NO](PF(6))(3) (1) (iso = isoquinoline and bpy = 2,2`- bipyridine) by irradiating the MLCT transition of the chloro analog cis-[Ru(bpy) 2(iso) Cl] PF6 (2). The compounds displayed peaks in the ESI-MS spectra at m/z 749.1 and m/z 578.1 ascribed, respectively, to ([1(NO(o))-2PF(6)center dot CH(3)OH](2+)) and ([2-PF(6)](+)). In the cyclic voltammograms, the nitrosyl complex presented two redox waves related to the NO ligand at 0.48 and -0.37 V (versus Ag/AgCl, NO(+/0/-1) processes), while the sensitizer showed two reversible waves at 0.79 and -1.46 V (versus Ag/AgCl, Ru(2+/3+) and bpy(0/-1), respectively). The most important feature of this system is that the nitrosyl compound does not have significant absorption in the visible region, while the sensitizer has an intense band centered at 496 nm. The irradiation of an equimolar mixture of the two compounds in an ethanol: water solution (v: v) with light of lambda > 500 nm leads to NO release, as probed by amperometric measurements. The variational method was applied, showing that the two compounds self-assembly in solution with a 1: 1 stoichiometry. Fluorescence spectra acquired at 77 K provided the E(0-0) for the system and, from the thermodynamic cycle it was estimated that the photoinduced electron transfer between the species has a Delta G value of -1.59 eV. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT ""c"" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT ""c"" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT ""c"" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of critical cysteines/related thiols of adenine nucleotide translocase (ANT) is believed to be an important event of the Ca(2+)-induced mitochondrial permeability transition (MPT), a process mediated by a cyclosporine A/ADP-sensitive permeability transition pores (PTP) opening. We addressed the ANT-Cys(56) relative mobility status resulting from the interaction of ANT/surrounding cardiolipins with Ca(2+) and/or ADP by means of computational chemistry analysis (Molecular Interaction Fields and Molecular Dynamics studies), supported by classic mitochondrial swelling assays. The following events were predicted: (i) Ca(2+) interacts preferentially with the ANT surrounding cardiolipins bound to the H4 helix of translocase, (ii) weakens the cardiolipins/ANT interactions and (iii) destabilizes the initial ANT-Cys(56) residue increasing its relative mobility. The binding of ADP that stabilizes the conformation ""m"" of ANT and/or cardiolipin, respectively to H5 and H4 helices, could stabilize their contacts with the short helix h56 that includes Cys(56), accounting for reducing its relative mobility. The results suggest that Ca(2+) binding to adenine nucleotide translocase (ANT)-surrounding cardiolipins in c-state of the translocase enhances (ANT)-Cys(56) relative mobility and that this may constitute a potential critical step of Ca(2+)-induced PTP opening. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim of the study: Yacon [Smallanthus sonchifolius (Poepp. 82 Endl.) H. Robinson, Asteraceae] is an Andean species that has traditionally been used as an anti-diabetic herb in several countries around the world, including Brazil. Its hypoglycaemic action has recently been demonstrated in normal and diabetic rats. However, studies about the safety of prolonged oral consumption of yacon leaf extracts are lacking. Thus, this work was undertaken to evaluate the repeated-dose toxicity of three extracts from yacon leaves: the aqueous extract (AE) prepared as a tea infusion; the leaf-rinse extract (LRE), which is rich in sesquiterpene lactones (STLs); and a polar extract from leaves without trichomes, or polar extract (PE), which lacks STLs but is rich in chlorogenic acids (CGAs). Materials and methods: The major classes of the compounds were confirmed in each extract by IR spectra and HPLC-UV-DAD profiling as well as comparison to standard compounds. The toxicity of each extract was evaluated in a repeated-dose toxicity study in Wistar rats for 90 days. Results: The PE was rich in CGAs, but we did not detect any STLs. The AE and LEE showed the presence of STLs. The polar extract caused alterations in some biochemical parameters, but the animals did not show signs of behavioural toxicity or serious lesions in organs. Alterations of specific biochemical parameters in the blood (creatinine 7.0 mg/dL, glucose 212.0 mg/dL, albumin 2.8 g/dL) of rats treated with AE (10,50 and 100 mg/kg) and LRE (10 and 100 mg/kg) pointed to renal damage, which was confirmed by histological analysis of the kidneys. Conclusions: The renal damage was associated with increased blood glucose levels after prolonged oral administration of the AE. This observation suggested that the hypoglycaemic effect observed after treatment for 30 days in an earlier study is reversible and was likely the result of renal injury caused by the toxicity of yacon. Because STLs were detected in both AE and LRE, there is strong evidence that these terpenoids are the main toxic compounds in the leaves of the yacon. Based on our results, we do not recommend the oral use of yacon leaves to treat diabetes. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>Carbon dioxide (CO(2)) and its hydration product bicarbonate (HCO(3)-) are essential molecules in various physiological processes of all living organisms. The reversible interconversion between CO(2) and HCO(3)- is in equilibrium. This reaction is slow without catalyst, but can be rapidly facilitated by Zn2+-metalloenzymes named carbonic anhydrases (CAs). To gain an insight into the function of multiple clades of fungal CA, we chose to investigate the filamentous fungi Aspergillus fumigatus and A. nidulans. We identified four and two CAs in A. fumigatus and A. nidulans, respectively, named cafA-D and canA-B. The cafA and cafB genes are constitutively, strongly expressed whereas cafC and cafD genes are weakly expressed but CO(2)-inducible. Heterologous expression of the A. fumigatus cafB, and A. nidulans canA and canB genes completely rescued the high CO(2)-requiring phenotype of a Saccharomyces cerevisiae Delta nce103 mutant. Only the Delta cafA Delta cafB and Delta canB deletion mutants were unable to grow at 0.033% CO(2), of which growth defects can be restored by high CO(2). Defects in the CAs can affect Aspergilli conidiation. Furthermore, A. fumigatus Delta cafA, Delta cafB, Delta cafC, Delta cafD and Delta cafA Delta cafB mutant strains are fully virulent in a low-dose murine infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article deals with the efficiency of fractional integration parameter estimators. This study was based on Monte Carlo experiments involving simulated stochastic processes with integration orders in the range]-1,1[. The evaluated estimation methods were classified into two groups: heuristics and semiparametric/maximum likelihood (ML). The study revealed that the comparative efficiency of the estimators, measured by the lesser mean squared error, depends on the stationary/non-stationary and persistency/anti-persistency conditions of the series. The ML estimator was shown to be superior for stationary persistent processes; the wavelet spectrum-based estimators were better for non-stationary mean reversible and invertible anti-persistent processes; the weighted periodogram-based estimator was shown to be superior for non-invertible anti-persistent processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M(r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always < 2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we describe the characterization of the complex [Fe(tpy-NH2)(2)](PF6)(2) (tpy-NH2 = bis[4`-(3-aminophenyl)-2, 2`:6`,2 ``-terpyridine]. The complex was oxidatively electropolymerized on glassy.-carbon electrodes in CH3CN/0.1 M tetraethylammonium perchlorate (TEAP) to generate polymer films that exhibit reversible oxidative electrochemical behavior in a wide potential range (0.0-1.6 V), as well as high conductivity and stability/durability. In situ spectrocyclic voltammetry of this modified electrode was carried out on a photodiode array spectrophotometer attached to a potentiostat, which provided UV-Vis absorption spectra of the redox species during the potential sweep. We determined charge transport parameters as a function of time and thickness of the modified electrode, and the results showed that poly-[[Fe(tpy-NH2)(2)](2+)](n) can be made to exhibit three regimes of charge transport behavior by manipulation of the film thickness and the experimental time-scale. Morphological characterization of the film was provided by atomic force microscopy. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleoside diphosphate kinases play a crucial role in the purine-salvage pathway of trypanosomatid protozoa and have been found in the secretome of Leishmania sp., suggesting a function related to host-cell integrity for the benefit of the parasite. Due to their importance for housekeeping functions in the parasite and by prolonging the life of host cells in infection, they become an attractive target for drug discovery and design. In this work, we describe the first structural characterization of nucleoside diphosphate kinases b from trypanosomatid parasites (tNDKbs) providing insights into their oligomerization, stability and structural determinants for nucleotide binding. Crystallographic studies of LmNDKb when complexed with phosphate, AMP and ADP showed that the crucial hydrogen-bonding residues involved in the nucleotide interaction are fully conserved in tNDKbs. Depending on the nature of the ligand, the nucleotide-binding pocket undergoes conformational changes, which leads to different cavity volumes. SAXS experiments showed that tNDKbs, like other eukaryotic NDKs, form a hexamer in solution and their oligomeric state does not rely on the presence of nucleotides or mimetics. Fluorescence-based thermal-shift assays demonstrated slightly higher stability of tNDKbs compared to human NDKb (HsNDKb), which is in agreement with the fact that tNDKbs are secreted and subjected to variations of temperature in the host cells during infection and disease development. Moreover, tNDKbs were stabilized upon nucleotide binding, whereas HsNDKb was not influenced. Contrasts on the surface electrostatic potential around the nucleotide-binding pocket might be a determinant for nucleotide affinity and protein stability differentiation. All these together demonstrated the molecular adaptation of parasite NDKbs in order to exert their biological functions intra-parasite and when secreted by regulating ATP levels of host cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An Adobe (R) animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na(+) and K(+) translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P(2c)-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also known as an E(1)/E(2)-ATPase as it undergoes conformational changes between the E(1) and E(2) forms during the pumping cycle, altering the affinity and accessibility of the transmembrane ion-binding sites. The animation is based on Horisberger`s scheme that incorporates the most recent significant findings to have improved our understanding of the (Na, K)-ATPase structure function relationship. The movements of the various domains within the (Na, K)-ATPase alpha-subunit illustrate the conformational changes that occur during Na(+) and K(+) translocation across the membrane and emphasize involvement of the actuator, nucleotide, and phosphorylation domains, that is, the ""core engine"" of the pump, with respect to ATP binding, cation transport, and ADP and P(i) release.