34 resultados para RE-OS ISOTOPIC SYSTEMATICS
Resumo:
The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO(2)) during glaciation(1). High partial pressures of atmospheric CO(2) (p(CO2); from 20,000 to 90,000 p. p. m. v.) in the aftermath of the Marinoan glaciation (similar to 635 Myr ago) have been inferred from both boron and triple oxygen isotopes(2,3). These p(CO2) values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise(1). The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units(4-8), provide p(CO2) estimates lower than 3,200 p. p. m. v.-and possibly as low as the current value of similar to 400 p. p. m. v. Our new constraint, and our reinterpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.
Resumo:
Diverse invertebrate and vertebrate species live in association with plants of the large Neotropical family Bromeliaceae. Although previous studies have assumed that debris of associated organisms improves plant nutrition, so far little evidence supports this assumption. In this study we used isotopic ((15)N) and physiological methods to investigate if the treefrog Scinax hayii, which uses the tank epiphytic bromeliad Vriesea bituminosa as a diurnal shelter, contributes to host plant nutrition. In the field, bromeliads with frogs had higher stable N isotopic composition (delta(15)N) values than those without frogs. Similar results were obtained from a controlled greenhouse experiment. Linear mixing models showed that frog feces and dead termites used to simulate insects that eventually fall inside the bromeliad tank contributed, respectively, 27.7% (+/- 0.07 SE) and 49.6% (+/- 0.50 SE) of the total N of V. bituminosa. Net photosynthetic rate was higher in plants that received feces and termites than in controls; however, this effect was only detected in the rainy, but not in the dry season. These results demonstrate for the first time that vertebrates contribute to bromeliad nutrition, and that this benefit is seasonally restricted. Since amphibian-bromeliad associations occur in diverse habitats in South and Central America, this mechanism for deriving nutrients may be important in bromeliad systems throughout the Neotropics.
Resumo:
The utility of the female genitalia and associated sclerites (tergite and sternite VIII) in the systematics of the Curculionidae is discussed. Examples from the tribe Entimini (Entiminae) and subtribe Hylobiina (Molytinae: Hylobiini) are given. The female characters prove to be informative for establishing the phylogenetic relationships among genera of Entimini. They are essential in determining species groups within the genus Amiticus Pascoe, Hylobiina.
Resumo:
We present a large-scale systematics of charge densities, excitation energies and deformation parameters For hundreds of heavy nuclei The systematics is based on a generalized rotation vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation. (C) 2010 Elsevier B V All rights reserved.