71 resultados para Polynomial Classifier
Resumo:
A hybrid system to automatically detect, locate and classify disturbances affecting power quality in an electrical power system is presented in this paper. The disturbances characterized are events from an actual power distribution system simulated by the ATP (Alternative Transients Program) software. The hybrid approach introduced consists of two stages. In the first stage, the wavelet transform (WT) is used to detect disturbances in the system and to locate the time of their occurrence. When such an event is flagged, the second stage is triggered and various artificial neural networks (ANNs) are applied to classify the data measured during the disturbance(s). A computational logic using WTs and ANNs together with a graphical user interface (GU) between the algorithm and its end user is then implemented. The results obtained so far are promising and suggest that this approach could lead to a useful application in an actual distribution system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we address the problem of scheduling jobs in a no-wait flowshop with the objective of minimising the total completion time. This problem is well-known for being nondeterministic polynomial-time hard, and therefore, most contributions to the topic focus on developing algorithms able to obtain good approximate solutions for the problem in a short CPU time. More specifically, there are various constructive heuristics available for the problem [such as the ones by Rajendran and Chaudhuri (Nav Res Logist 37: 695-705, 1990); Bertolissi (J Mater Process Technol 107: 459-465, 2000), Aldowaisan and Allahverdi (Omega 32: 345-352, 2004) and the Chins heuristic by Fink and Voa (Eur J Operat Res 151: 400-414, 2003)], as well as a successful local search procedure (Pilot-1-Chins). We propose a new constructive heuristic based on an analogy with the two-machine problem in order to select the candidate to be appended in the partial schedule. The myopic behaviour of the heuristic is tempered by exploring the neighbourhood of the so-obtained partial schedules. The computational results indicate that the proposed heuristic outperforms existing ones in terms of quality of the solution obtained and equals the performance of the time-consuming Pilot-1-Chins.
Resumo:
In this paper, the method of Galerkin and the Askey-Wiener scheme are used to obtain approximate solutions to the stochastic displacement response of Kirchhoff plates with uncertain parameters. Theoretical and numerical results are presented. The Lax-Milgram lemma is used to express the conditions for existence and uniqueness of the solution. Uncertainties in plate and foundation stiffness are modeled by respecting these conditions, hence using Legendre polynomials indexed in uniform random variables. The space of approximate solutions is built using results of density between the space of continuous functions and Sobolev spaces. Approximate Galerkin solutions are compared with results of Monte Carlo simulation, in terms of first and second order moments and in terms of histograms of the displacement response. Numerical results for two example problems show very fast convergence to the exact solution, at excellent accuracies. The Askey-Wiener Galerkin scheme developed herein is able to reproduce the histogram of the displacement response. The scheme is shown to be a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a family of algorithms for approximate inference in credal networks (that is, models based on directed acyclic graphs and set-valued probabilities) that contain only binary variables. Such networks can represent incomplete or vague beliefs, lack of data, and disagreements among experts; they can also encode models based on belief functions and possibilistic measures. All algorithms for approximate inference in this paper rely on exact inferences in credal networks based on polytrees with binary variables, as these inferences have polynomial complexity. We are inspired by approximate algorithms for Bayesian networks; thus the Loopy 2U algorithm resembles Loopy Belief Propagation, while the Iterated Partial Evaluation and Structured Variational 2U algorithms are, respectively, based on Localized Partial Evaluation and variational techniques. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Starting from the Durbin algorithm in polynomial space with an inner product defined by the signal autocorrelation matrix, an isometric transformation is defined that maps this vector space into another one where the Levinson algorithm is performed. Alternatively, for iterative algorithms such as discrete all-pole (DAP), an efficient implementation of a Gohberg-Semencul (GS) relation is developed for the inversion of the autocorrelation matrix which considers its centrosymmetry. In the solution of the autocorrelation equations, the Levinson algorithm is found to be less complex operationally than the procedures based on GS inversion for up to a minimum of five iterations at various linear prediction (LP) orders.
Resumo:
The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.
Resumo:
A total of 152,145 weekly test-day milk yield records from 7317 first lactations of Holstein cows distributed in 93 herds in southeastern Brazil were analyzed. Test-day milk yields were classified into 44 weekly classes of DIM. The contemporary groups were defined as herd-year-week of test-day. The model included direct additive genetic, permanent environmental and residual effects as random and fixed effects of contemporary group and age of cow at calving as covariable, linear and quadratic effects. Mean trends were modeled by a cubic regression on orthogonal polynomials of DIM. Additive genetic and permanent environmental random effects were estimated by random regression on orthogonal Legendre polynomials. Residual variances were modeled using third to seventh-order variance functions or a step function with 1, 6,13,17 and 44 variance classes. Results from Akaike`s and Schwarz`s Bayesian information criterion suggested that a model considering a 7th-order Legendre polynomial for additive effect, a 12th-order polynomial for permanent environment effect and a step function with 6 classes for residual variances, fitted best. However, a parsimonious model, with a 6th-order Legendre polynomial for additive effects and a 7th-order polynomial for permanent environmental effects, yielded very similar genetic parameter estimates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Despite the increase in the use of natural compounds in place of synthetic derivatives as antioxidants in food products, the extent of this substitution is limited by cost constraints. Thus, the objective of this study was to explore the synergism on the antioxidant activity of natural compounds, for further application in food products. Three hydrosoluble compounds (x(1) = caffeic acid, x(2) = carnosic acid, and x(3) = glutathione) and three liposoluble compounds (x(1) = quercetin, x(2) = rutin, and x(3) = genistein) were mixed according to a ""centroid simplex design"". The antioxidant activity of the mixtures was analyzed by the ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAL) methodologies, and activity was also evaluated in an oxidized mixed micelle prepared with linoleic acid (LAOX). Cubic polynomial models with predictive capacity were obtained when the mixtures were submitted to the LAOX methodology ((y) over cap = 0.56 x(1) + 0.59 x(2) + 0.04 x(3) + 0.41 x(1)x(2) - 0.41 x(1)x(3) - 1.12 x(2)x(3) - 4.01 x(1)x(2)x(3)) for the hydrosoluble compounds, and to FRAP methodology ((y) over cap = 3.26 x(1) + 2.39 x(2) + 0.04 x(3) + 1.51 x(1)x(2) + 1.03 x(1)x(3) + 0.29 x(1)x(3) + 3.20 x(1)x(2)x(3)) for the liposoluble compounds. Optimization of the models suggested that a mixture containing 47% caffeic acid + 53% carnosic acid and a mixture containing 67% quercetin + 33% rutin were potential synergistic combinations for further evaluation using a food matrix.
Resumo:
Recently, we have built a classification model that is capable of assigning a given sesquiterpene lactone (STL) into exactly one tribe of the plant family Asteraceae from which the STL has been isolated. Although many plant species are able to biosynthesize a set of peculiar compounds, the occurrence of the same secondary metabolites in more than one tribe of Asteraceae is frequent. Building on our previous work, in this paper, we explore the possibility of assigning an STL to more than one tribe (class) simultaneously. When an object may belong to more than one class simultaneously, it is called multilabeled. In this work, we present a general overview of the techniques available to examine multilabeled data. The problem of evaluating the performance of a multilabeled classifier is discussed. Two particular multilabeled classification methods-cross-training with support vector machines (ct-SVM) and multilabeled k-nearest neighbors (M-L-kNN)were applied to the classification of the STLs into seven tribes from the plant family Asteraceae. The results are compared to a single-label classification and are analyzed from a chemotaxonomic point of view. The multilabeled approach allowed us to (1) model the reality as closely as possible, (2) improve our understanding of the relationship between the secondary metabolite profiles of different Asteraceae tribes, and (3) significantly decrease the number of plant sources to be considered for finding a certain STL. The presented classification models are useful for the targeted collection of plants with the objective of finding plant sources of natural compounds that are biologically active or possess other specific properties of interest.
Resumo:
Fogo selvagem (FS) is mediated by pathogenic, predominantly IgG4, anti-desmoglein 1 (Dsg1) autoantibodies and is endemic in Limao Verde, Brazil. IgG and IgG subclass autoantibodies were tested in a sample of 214 FS patients and 261 healthy controls by Dsg1 ELISA. For model selection, the sample was randomly divided into training (50%), validation (25%), and test (25%) sets. Using the training and validation sets, IgG4 was chosen as the best predictor of FS, with index values above 6.43 classified as FS. Using the test set, IgG4 has sensitivity of 92% (95% confidence interval (95% CI): 82-95%), specificity of 97% (95% CI: 89-100%), and area under the curve of 0.97 ( 95% CI: 0.94-1.00). The IgG4 positive predictive value (PPV) in Limao Verde (3% FS prevalence) was 49%. The sensitivity, specificity, and PPV of IgG anti-Dsg1 were 87, 91, and 23%, respectively. The IgG4-based classifier was validated by testing 11 FS patients before and after clinical disease and 60 Japanese pemphigus foliaceus patients. It classified 21 of 96 normal individuals from a Limao Verde cohort as having FS serology. On the basis of its PPV, half of the 21 individuals may currently have preclinical FS and could develop clinical disease in the future. Identifying individuals during preclinical FS will enhance our ability to identify the etiological agent(s) triggering FS.
Resumo:
In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose a method based on association rule-mining to enhance the diagnosis of medical images (mammograms). It combines low-level features automatically extracted from images and high-level knowledge from specialists to search for patterns. Our method analyzes medical images and automatically generates suggestions of diagnoses employing mining of association rules. The suggestions of diagnosis are used to accelerate the image analysis performed by specialists as well as to provide them an alternative to work on. The proposed method uses two new algorithms, PreSAGe and HiCARe. The PreSAGe algorithm combines, in a single step, feature selection and discretization, and reduces the mining complexity. Experiments performed on PreSAGe show that this algorithm is highly suitable to perform feature selection and discretization in medical images. HiCARe is a new associative classifier. The HiCARe algorithm has an important property that makes it unique: it assigns multiple keywords per image to suggest a diagnosis with high values of accuracy. Our method was applied to real datasets, and the results show high sensitivity (up to 95%) and accuracy (up to 92%), allowing us to claim that the use of association rules is a powerful means to assist in the diagnosing task.
Resumo:
The aim of this study was to evaluate the effects of substituting soybean meal for urea on milk protein fractions (casein, whey protein and non-protein nitrogen) of dairy cows in three dietary levels. Nine mid-lactation Holstein cows were used in a 3 x 3 Latin square arrangement, composed of 3 treatments, 3 periods of 21 days each, and 3 squares. The treatments consisted of three different diets fed to lactating cows, which were randomly assigned to three groups of three animals: (A) no urea inclusion, providing 100% of crude protein (CP), rumen undegradable protein (RUP) and rumen degradable protein (RDP) requirements, using soybean meal and sugarcane as roughage; (B) urea inclusion at 7.5 g/kg DM in partial substitution of soybean meal CP equivalent; (C) urea inclusion at 15 g/kg DM in partial substitution of soybean meal CP equivalent. Rations were isoenergetic and isonitrogenous-1 60 g/kg DM of crude protein and 6.40 MJ/kg DM of net energy for lactation. When the data were analyzed by simple polynomial regression, no differences were observed among treatments in relation to milk CP content, true protein, casein, whey protein, non-casein and non-protein nitrogen, or urea. The milk true protein:crude protein and casein:true protein ratios were not influenced by substituting soybean meal for urea in the diet. Based on the results it can be concluded that the addition of urea up to 15 g/kg of diet dry matter in substitution of soybean meal did not alter milk protein concentration casein, whey protein and its non-protein fractions, when fed to lactating dairy cows. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A semi-detailed gravity survey was carried out over an area of 650 km(2) localized in the Eo-Neoproterozoic coastal zone of Paraiba State where 548 new gravity stations were added to the existing database. Gravity measurements were made with a LaCoste and Romberg model G meter with a precision of 0.04 mGal. The altitude was determined by barometric levelling with a fixed base achieving a 1.2 m measure of uncertainty, corresponding to an overall accuracy of 0.24 mGal for the Bouguer anomaly. The residual Bouguer map for a 7th degree regional polynomial showed a circumscribed negative anomaly coincident with a localized aero-magnetic anomaly and with hydro-thermally altered outcrops, near the city of Itapororoca. The 3D gravity modelling, constrained by geologic mapping was interpreted as a low density, fractured and/or altered material with a most probable volume of approximately 23 km(3), extending to about 8,500 m depth. This result is in accordance with a volcanic body associated with hydrothermal processes accompanied by surface mineralization evidence, which may be of interest to the mining industry.