38 resultados para Polymorphic microsatellites
Resumo:
In this study, we provide phylogenetic and biogeographic evidence that the Trypanosomo cruzi lineages T. cruzi I (TCI) and T. cruzi IIa (TCIIa) circulate amongst non-human primates in Brazilian Amazonia, and are transmitted by Rhodnius species in overlapping arboreal transmission cycles, sporadically infecting humans. TO presented higher prevalence rates, and no lineages other than TCI and TCIIa were found in this study in wild monkeys and Rhodnius from the Amazonian region. We characterised TO and TCIIa from wild primates (16 TO and five TCIIa), Rhodnius spp, (13 TCI and nine TCIIa), and humans with Chagas disease associated with oral transmission (14 TO and five TCIIa) in Brazilian Amazonia. To our knowledge, TCIIa had not been associated with wild monkeys until now. Polymorphisms of ssrDNA, cytochrome b gene sequences and randomly amplified polymorphic DNA (RAPD) patterns clearly separated TCIIa from TCIIb-e and TCI lineages, and disclosed small intra-lineage polymorphisms amongst isolates from Amazonia. These data are important in understanding the complexity of the transmission cycles, genetic structure, and evolutionary history of T cruzi populations circulating in Amazonia, and they contribute to both the unravelling of human infection routes and the pathological peculiarities of Chagas disease in this region. (C) 2008 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We used mixtures of genomic DNA from two genetically distinct isolates from Brazil, 42M and 312M, to investigate how accurately 12-locus microsatellite typing describes the overall genetic diversity and characterizes multilocus haplotypes in multiple-clone Plasmodium vivax infections. We found varying PCR amplification efficiencies of microsatellite alleles; for example, from the same 1:1 mixture of 42M and 312M DNA we amplified predominantly 312M-type alleles at 10 loci and 42M-type alleles at 2 loci. All microsatellite alleles were accurately scored in 1:0.5 and 1:0.25 312M:42M DNA mixtures, even when minor peak heights did not meet previously suggested criteria for minor allele detection in multiple-clone infections. Relative proportions of major and minor alleles were unaffected by multiple displacement amplification of template DNA prior to PCR-based microsatellite typing. Although microsatellite typing may detect minor alleles in clone mixtures, amplification biases may lead to inaccurate assignment of predominant haplotypes in multiple-clone P. vivax infections. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Triatoma infestans, the main vector of Chagas disease, has nearly been eliminated from Brazil. Nevertheless, other triatominae species are involved in the domiciliation process, including Triatoma rubrovaria in Rio Grande do Sul State (RS). Previous studies showed that 1.6% of the T rubrovaria specimens collected at the rural district of Quarai, RS, were naturally infected by Trypanosoma cruzi. In this study, five T. cruzi isolates obtained from infected triatomines were characterized molecularly and biologically. Genotyping of the T cruzi isolates showed that they belong to lineage IIc of T cruzi (TCIIc). Biological characterization showed miotropism and myositis during acute and chronic phases of infection, respectively. Virulence and mortality rates were variable among isolates. To our knowledge, this study corresponds to the first characterization of T cruzi isolates from T rubrovaria and the first description of TCIIc in the sylvatic cycle of T cruzi from the southern region of Brazil.
Resumo:
Analysis of the phylogenetic relationships among trypanosomes from vertebrates and invertebrates disclosed a new lineage of trypanosomes circulating among anurans and sand flies that share the same ecotopes in Brazilian Amazonia. This assemblage of closely related trypanosomes was determined by comparing whole SSU rDNA sequences of anuran trypanosomes from the Brazilian biomes of Amazonia, the Pantanal, and the Atlantic Forest and from Europe, North America, and Africa, and from trypanosomes of sand flies from Amazonia. Phylogenetic trees based on maximum likelihood and parsimony corroborated the positioning of all new anuran trypanosomes in the aquatic clade but did not support the monophyly of anuran trypanosomes. However, all analyses always supported four major clades (An01-04) of anuran trypanosomes. Clade An04 is composed of trypanosomes from exotic anurans. Isolates in clades An01 and An02 were from Brazilian frogs and toads captured in the three biomes studied, Amazonia, the Pantanal and the Atlantic Forest. Clade An01 contains mostly isolates from Hylidae whereas clade An02 comprises mostly isolates from Bufonidae; and clade An03 contains trypanosomes from sand flies and anurans of Bufonidae, Leptodactylidae, and Leiuperidae exclusively from Amazonia. To our knowledge, this is the first study describing morphological and growth features, and molecular phylogenetic affiliation of trypanosomes from anurans and phlebotomines, incriminating these flies as invertebrate hosts and probably also as important vectors of Amazonian terrestrial anuran trypanosomes.
Resumo:
We characterized four Brazilian trypanosomes isolated from domestic rats and three from captive nonhuman primates that were morphologically similar to T. lewisi, a considered non-pathogenic species restricted to rodents and transmitted by fleas, despite its potential pathogenicity for infants. These isolates were identified as T. lewisi by barcoding using V7V8 SSU rDNA sequences. In inferred phylogenetic trees, all isolates clustered tightly with reference T. lewisi and T. lewisi-like trypanosomes from Europe, Asia and Africa and despite their high sequence conservation formed a homogeneous clade separate from other species of the subgenus T. (Herpetosoma). With the aim of clearly resolving the relationships between the Brazilian isolates from domestic rats and primates, we compared sequences from more polymorphic ITS rDNA. Results corroborated that isolates from Brazilian rats and monkeys were indeed of the same species and quite close to T. lewisi isolates of humans and rats from different geographical regions. Morphology of the monkey isolates and their behaviour in culture and in experimentally infected rats were also compatible with T. lewisi. However, infection with T. lewisi is rare among monkeys. We have examined more than 200 free-ranging and 160 captive monkeys and found only three infected individuals among the monkeys held in captivity. The findings of this work suggest that proximity of monkeys and infected rats and their exposure to infected fleas may be responsible for the host switching of T. Iewisi from their natural rodent species to primates. This and previous studies reporting T. lewisi in humans suggest that this trypanosome can cause sporadic and opportunistic fleaborne infection in primates. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Mycoplasma synoviae (MS) is an important avian pathogen may cause both respiratory disease and joint inflammation synovitis in poultry, causing economic losses to the Brazilian poultry industry. The genotypic variation in 16S rRNA gene is unknown. Partial sequences of 16S rRNA gene of 19 strains of M. synoviae were sequenced and analyzed in order to obtain molecular characterization and evaluation of the genetic variability of strains from distinct Brazilian areas of poultry production. Different polymorphic patterns were observed. The number of polymorphic alterations in the studied strains ranged from 0 to 6. The nucleotide variations, including deletion, insertion and substitutions, ranged from 3 to 5. The genotypic diversity observed in this study may be explained by spontaneous mutations that may occur when a lineage remains in the same flock for long periods. The culling and reposition in poultry flocks may be responsible for the entry of new strains in different areas. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We have studied an agent model which presents the emergence of sexual barriers through the onset of assortative mating, a condition that might lead to sympatric speciation. In the model, individuals are characterized by two traits, each determined by a single locus A or B. Heterozygotes on A are penalized by introducing an adaptive difference from homozygotes. Two niches are available. Each A homozygote is adapted to one of the niches. The second trait, called the marker trait has no bearing on the fitness. The model includes mating preferences, which are inherited from the mother and subject to random variations. A parameter controlling recombination probabilities of the two loci is also introduced. We study the phase diagram by means of simulations, in the space of parameters (adaptive difference, carrying capacity, recombination probability). Three phases are found, characterized by (i) assortative mating, (ii) extinction of one of the A alleles and (iii) Hardy-Weinberg like equilibrium. We also make perturbations of these phases to see how robust they are. Assortative mating can be gained or lost with changes that present hysteresis loops, showing the resulting equilibrium to have partial memory of the initial state and that the process of going from a polymorphic panmictic phase to a phase where assortative mating acts as sexual barrier can be described as a first-order transition. (C) 2009 Published by Elsevier Ltd.
Resumo:
Mebendazole (MBZ) is a common benzimidazole anthelmintic that exists in three different polymorphic forms, A, B, and C. Polymorph C is the pharmaceutically preferred form due to its adequated aqueous solubility. No single crystal structure determinations depicting the nature of the crystal packing and molecular conformation and geometry have been performed on this compound. The crystal structure of mebendazole form C is resolved for the first time. Mebendazole form C crystallizes in the triclinic centrosymmetric space group and this drug is practically planar, since the least-squares methyl benzimidazolylcarbamate plane is much fitted on the forming atoms. However, the benzoyl group is twisted by 31(1)degrees from the benzimidazole ring, likewise the torsional angle between the benzene and carbonyl moieties is 27(1)degrees. The formerly described bends and other interesting intramolecular geometry features were viewed as consequence of the intermolecular contacts occurring within mebendazole C structure. Among these features, a conjugation decreasing through the imine nitrogen atom of the benzimidazole core and a further resonance path crossing the carbamate one were described. At last, the X-ray powder diffractogram of a form C rich mebendazole mixture was overlaid to the calculated one with the mebendazole crystal structure. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2336-2344, 2009