63 resultados para Pneumatice Pressure, Distal Radius Fracture, Dynamic Loading, Fracture Healing
Resumo:
This study evaluated the fracture strength of teeth restored with bonded ceramic inlays and overlays compared to sound teeth. Thirty sound human maxillary premolars were assigned to 3 groups: 1- sound/unprepared (control); 2- inlays and 3- overlays. The inlay cavity design was Class II MOD preparation with an occlusal width of 1/2 of the intercuspal distance. The overlay cavity design was similar to that of the inlay group, except for buccal and palatal cusp coverage The inlay and overlay groups were restored with feldspathic porcelain bonded with adhesive cement. The specimens were subjected to a compressive load until fracture. Data were analyzed statistically by the Kruskal-Wallis test at 5% significance level. The fracture strength means (KN) were: Sound/unprepared group = 1.17, Inlay group= 1.17, and Overlay group = 1.14. There were no statistically significant differences (p>0.05) among the groups. For inlays and overlays, the predominant fracture mode involved fragments of one cusp (70% of simple fractures). The fracture strength of teeth restored with inlay and overlay ceramics with cusp coverage was similar to that of intact teeth.
Resumo:
This study evaluated fracture torque by torsion, in relation to the length and diameter of orthodontic mini-implants, to demonstrate their viability for clinical and experimental use based on the torque recommended by the manufacturers. The fractures at the moment of insertion, whose incidence in the literature is around 4%, are principally due to excessive force and the inability of the implant to resist rotational forces. Thirty orthodontic mini-implants of three commercial brands available in Brazil (Neodent 1.6 x 9 mm, Dentoflex 1.6 x 9 mm and Kopp 1.6 x 9 mm) were attached to a device made specifically for this research, leaving the mini-implants with sufficient stability. The miniimplants were submitted to torsion torque, using a digital torque wrench, until their breaking point. The values obtained with the test were submitted to analysis of variance and the Tukey test. The mean values of mini-implant ruptures were 26 N.cm for group A (Dentoflex), 25.4 N. cm for group B (Kopp) and 32.8 N.cm for group C (Neodent). From the Tukey test we could observe that the relationships between the means of the Dentoflex and Neodent groups, and between the Kopp and Neodent groups, were significant. Between the Dentoflex and Kopp groups, significance was nonexistent. All the values found in our research for fracture torque were higher than the limits recommended by the manufacturers for clinical use in orthodontics. The highest values were found in the Neodent group.
Resumo:
center dot Dynamic resistance exercise promotes a sizeable increase in blood pressure during its execution in non medicated hypertensives. WHAT THIS STUDY ADDS center dot Atenolol not only decreases blood pressure level but also mitigates the increase of blood pressure during dynamic resistance exercise in hypertensive patients. An increase in blood pressure during resistance exercise might be at least in part attributed to an increase in cardiac output. AIMS This study was conducted to determine whether atenolol was able to decrease BP level and mitigate BP increase during dynamic resistance exercise performed at three different intensities in hypertensives. METHODS Ten essential hypertensives (systolic/diastolic BP between 140/90 and 160/105 mmHg) were blindly studied after 6 weeks of placebo and atenolol. In each phase, volunteers executed, in a random order, three protocols of knee-extension exercises to fatigue: (i) one set at 100% of 1 RM; (ii) three sets at 80% of 1 RM; and (iii) three sets at 40% of 1 RM. Intra-arterial radial blood pressure was measured throughout the protocols. RESULTS Atenolol decreased systolic BP maximum values achieved during the three exercise protocols (100% = 186 +/- 4 vs. 215 +/- 7, 80% = 224 +/- 7 vs. 247 +/- 9 and 40% = 223 +/- 7 vs. 252 +/- 16 mmHg, P < 0.05). Atenolol also mitigated an increase in systolic BP in the first set of exercises (100% = +38 +/- 5 vs. +54 +/- 9; 80% = +68 +/- 11 vs. +84 +/- 13 and 40% = +69 +/- 7 vs. +84 +/- 14, mmHg, P < 0.05). Atenolol decreased diastolic BP values and mitigated its increase during exercise performed at 100% of 1 RM (126 +/- 6 vs. 145 +/- 6 and +41 +/- 6 vs. +52 +/- 6, mmHg, P < 0.05), but not at the other exercise intensities. CONCLUSIONS Atenolol was effective in both reducing systolic BP maximum values and mitigating BP increase during resistance exercise performed at different intensities in hypertensive subjects.
Resumo:
Refractory castables are composed of fractions of fine to fairly coarse particles. The fine fraction is constituted primarily of raw materials and calcium aluminate cement, which becomes hydrated, forming chemical bonds that stiffen the concrete during the curing process. The present study focused on an evaluation of several characteristics of two refractory castables with similar chemical compositions but containing aggregates of different sizes. The features evaluated were the maximum load, the fracture energy, and the ""relative crack-propagation work"" of the two castables heat-treated at 110, 650, 1100 and 1550 degrees C. The results enabled us to draw the following conclusions: the heat treatment temperature exerts a significant influence on the matrix/aggregate interaction, different microstructures form in the castables with temperature, and a relationship was noted between the maximum load and the fracture energy. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
In this paper, a computational tool concerning the computation of flexural and fracture toughness of cement based composites is presented. Firstly, RILEM`s (Reunion Internationale des Laboratoires d`Essais de Materiaux) recommendations related to the analysis of FRC in three-point bend tests are discussed in their relevant aspects regarding the computational implementations. The determination of other mechanical properties such as the Young modulus has been added to the program. Taking this into account, a new formulation based on displacements is used. In the second part of the paper, the determination of fracture properties of concrete, such as the fracture energy, G(F) , and the fracture toughness, K-IC(S), is discussed regarding the computational strategies used in the implementations. Several features whereby anterior data can be reanalyzed, obtained from other standards and recommendations, have been incorporated into the program, therefore allowing comparative studies and back analysis activities.
Resumo:
Thin hard coatings on components and tools are used increasingly due to the rapid development in deposition techniques, tribological performance and application skills. The residual stresses in a coated surface are crucial for its tribological performance. Compressive residual stresses in PVD deposited TiN and DLC coatings were measured to be in the range of 0.03-4 GPa on steel substrate and 0.1-1.3 GPa on silicon. MoS(2) coatings had tensional stresses in the range of 0.8-1.3 on steel and 0.16 GPa compressive stresses on silicon. The fracture pattern of coatings deposited on steel substrate were analysed both in bend testing and scratch testing. A micro-scale finite element method (FEM) modelling and stress simulation of a 2 mu m TiN-coated steel surface was carried out and showed a reduction of the generated tensile buckling stresses in front of the sliding tip when compressive residual stresses of 1 GPa were included in the model. However, this reduction is not similarly observed in the scratch groove behind the tip, possibly due to sliding contact-induced stress relaxation. Scratch and bending tests allowed calculation of the fracture toughness of the three coated surfaces, based on both empirical crack pattern observations and FEM stress calculation, which resulted in highest values for TiN coating followed by MoS(2) and DLC coatings, being K(C) = 4-11, about 2, and 1-2 MPa M(1/2), respectively. Higher compressive residual stresses in the coating and higher elastic modulus of the coating correlated to increased fracture toughness of the coated surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The 475 degrees C embrittlement in stainless steels is a well-known phenomenon associated to alpha prime (alpha`) formed by precipitation or spinodal decomposition. Many doubts still remain on the mechanism of alpha` formation and its consequence on deformation and fracture mechanisms and corrosion resistance. In this investigation, the fracture behavior and corrosion resistance of two high performance ferritic stainless steels were investigated: a superferritic DIN 1.4575 and MA 956 superalloy were evaluated. Samples of both stainless steels (SS) were aged at 475 degrees C for periods varying from 1 to 1,080 h. Their fracture surfaces were observed using scanning electron microscopy (SEM) and the cleavage planes were determined by electron backscattering diffraction (EBSD). Some samples were tested for corrosion resistance using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Brittle and ductile fractures were observed in both ferritic stainless steels after aging at 475 degrees C. For aging periods longer than 500 h, the ductile fracture regions completely disappeared. The cleavage plane in the DIN 1.4575 samples aged at 475 degrees C for 1,080 h was mainly {110}, however the {102}, {314}, and {131} families of planes were also detected. The pitting corrosion resistance decreased with aging at 475 degrees C. The effect of alpha prime on the corrosion resistance was more significant in the DIN 1.4575 SS comparatively to the Incoloy MA 956.
Resumo:
A brief look at the history of fractography has shown a recent trend in the quantification of topographic parameters through the use of three-dimensional reconstruction techniques, which associate SEM stereoscopy and stereophotogrammetry software, allowing the calculation of the elevation measurement at numerous points of the topography due to the parallax that takes place during the tilting of the sample along the microscope eucentric plane. Several investigators have used reconstruction techniques to correlate some fractographic parameters, such as fractal dimension and fractured to projected area ratio, to the mechanical properties of materials, such as fracture toughness and tensile strength. So far, the search for a clear relationship between the fracture topography and mechanical properties has provided ambiguous results. The present work applied a surface metrology software to reconstruct three-dimensionally fracture surfaces (transgranular cleavage, intergranular and dimple fracture), corrosion pits and tribo-surfaces in order to explore the potential of this stereophotogrammetry technique. The existence of a variation in the calculated topographic parameters with the conditions of SEM image acquisition reinforces the importance of both good image acquisition and accurate calibration methods in order to validate this 3D reconstruction technique in metrological terms. Preliminary results did not indicate the existence of a clear relationship between either the true to project area ratio and CVN absorbed energy or the fractal dimension and CVN absorbed energy. It is likely that each fracture mechanism presents a proper relationship between the fractographic parameters and mechanical properties. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The effects of temperature on the fast fracture behavior of aluminum nitride with 5 wt% Y(2)O(3) ceramic were investigated. Four-point flexural strength and fracture toughness were measured in air at several temperatures (30-1,300 A degrees C). The flexural strength gradually decreased with the increase of temperature up to 1,000 A degrees C due to the change in the fracture mode from transgranular to intergranular, and then became almost constant up to 1,300 A degrees C. Two main flaw types as fracture origin were identified: small surface flaw and large pores. The volume fraction of the large pores was only 0.01%; however, they limited the strength on about 50% of the specimens. The fracture toughness decreased slightly up to 800 A degrees C controlled by the elastic modulus change, and then decreased significantly at 1,000 A degrees C due to the decrease in the grain-boundary toughness. Above 1,000 A degrees C, the fracture toughness increased significantly, and at 1,300 A degrees C, its value was close to that measured at room temperature.
Resumo:
This study examines the applicability of a micromechanics approach based upon the computational cell methodology incorporating the Gurson-Tvergaard (GT) model and the CTOA criterion to describe ductile crack extension of longitudinal crack-like defects in high pressure pipeline steels. A central focus is to gain additional insight into the effectiveness and limitations of both approaches to describe crack growth response and to predict the burst pressure for the tested cracked pipes. A verification study conducted on burst testing of large-diameter, precracked pipe specimens with varying crack depth to thickness ratio (a/t) shows the potential predictive capability of the cell approach even though both the CT model and the CTOA criterion appear to depend on defect geometry. Overall, the results presented here lend additional support for further developments in the cell methodology as a valid engineering tool for integrity assessments of pipelines with axial defects. (C) 2011 Elsevier Ltd. All rights reserved,
Resumo:
A 14-year-old patient had a low-energy facial blunt trauma that evolved to right facial paralysis caused by parotid hematoma with parotid salivary gland lesion. Computed tomography and angiography demonstrated intraparotid collection without pseudoaneurysm and without radiologic signs of fracture in the face. The patient was treated with serial punctures for hematoma deflation, resolving with regression and complete remission of facial paralysis, with no late sequela. The authors discuss the relationship between facial nerve traumatic injuries associated or not with the presence of facial fractures, emphasizing the importance of early recognition and appropriate treatment of such cases.
Hip fracture prognosis: could bioimpedance be an alternative to conventional nutritional assessment?
Resumo:
Background: Risk-factors for mortality in hip fractures encompass nutritional status, nominally body mass index, but not body composition. Given the difficulty of anthropometric assessment in bedridden patients a prospective study with bioimpedance analysis was designed. Methods: Elderly patients with hip fracture were consecutively recruited. Biochemical tests, primitive bioimpedance measurements (resistance, reactance and phase angle) and follow-up till one year were targeted. Results: Patients (N = 69, 81.2 +/- 8.1 years old, 72.5% females) stayed in the hospital for 15.5 +/- 17.1 days, and 18.8 %(13/69) required further hospitalization during the ensuing months. Mortality was 11.6% within 30 days, coinciding with hospital mortality, and an additional 11.6% till one year, thus reaching 23.2%. Anemia, hypoalbuminemia and low transferrin, along with elevated glucose and urea were frequent, suggesting undernutrition with metabolic derangements. Reactance, urea and creatinine were different in patients suffering both early and late demise. Resistance, white blood cell count and osteoporosis were risk factors for early mortality only, and anemia exclusively for late mortality. Conclusions: Primitive bioimpedance measurements, which had not been hitherto investigated, were prognostically related to early and late mortality. These markers of disease-related malnutrition and especially reactance should be further studied in patients unfit for anthropometric evaluation due to fracture and immobility.
Resumo:
To evaluate the effects of frequency and inspiratory plateau pressure (Pplat) during recruitment manoeuvres (RMs) on lung and distal organs in acute lung injury (ALI). We studied paraquat-induced ALI rats. At 24 h, rats were anesthetized and RMs were applied using continuous positive airway pressure (CPAP, 40 cmH(2)O/40 s) or three-different sigh strategies: (a) 180 sighs/h and Pplat = 40 cmH(2)O (S180/40), (b) 10 sighs/h and Pplat = 40 cmH(2)O (S10/40), and (c) 10 sighs/h and Pplat = 20 cmH(2)O (S10/20). S180/40 yielded alveolar hyperinflation and increased lung and kidney epithelial cell apoptosis as well as type III procollagen (PCIII) mRNA expression. S10/40 resulted in a reduction in epithelial cell apoptosis and PCIII expression. Static elastance and alveolar collapse were higher in S10/20 than S10/40. The reduction in sigh frequency led to a protective effect on lung and distal organs, while the combination with reduced Pplat worsened lung mechanics and histology.
Resumo:
This study aimed to develop a plate to treat fractures of the mandibular body in dogs and to validate the project using finite elements and biomechanical essays. Mandible prototypes were produced with 10 oblique ventrorostral fractures (favorable) and 10 oblique ventrocaudal fractures (unfavorable). Three groups were established for each fracture type. Osteosynthesis with a pure titanium plate of double-arch geometry and blocked monocortical screws offree angulanon were used. The mechanical resistance of the prototype with unfavorable fracture was lower than that of the fcworable fracture. In both fractures, the deflection increased and the relative stiffness decreased proportionally to the diminishing screw number The finite element analysis validated this plate study, since the maximum tension concentration observed on the plate was lower than the resistance limit tension admitted by the titanium. In conclusion, the double-arch geometry plate fixed with blocked monocortical screws has sufficient resistance to stabilize oblique,fractures, without compromising mandibular dental or neurovascular structures. J Vet Dent 24 (7); 212 - 221, 2010
Resumo:
Introduction: This study evaluated the healing of mandibular condylar fracture in rats submitted to experimental and protein undernutrition (8% of protein) by means of histological analysis. Material: Forty-five adult Wistar rats were divided into three groups of 15 animals: a fracture group, who were submitted to condylar fracture with no changes in diet; an undernourished fracture group, who were submitted to a low protein diet and condylar fracture: an undernourished group, kept until the end of experiment, without condylar fracture. Displaced fractures of the right condyle were created under general anaesthesia. The histological study comprised fracture site and temporomandibular joint evaluations. Results: The undernourished fracture group showed significant weight loss. There was a marked decrease in the values of serum proteins and albumin in the undernourished fracture group. Histological analysis showed that protein undernutrition lead to atrophy of the condylar fibrocartilage. Fractures in undernutrition presented a delay in callus formation due to more extensive devitalized bone areas, and after 3 months there were still bone formation areas, while fibrous ankylosis occurred in the articular space. Conclusion: It was concluded that mandibular condyle fractures in rats with protein undernutrition had impaired callus formation, as well as fibrous ankylosis into the temporomandibular joint. (C) 2010 European Association for Cranio-Maxillo-Facial Surgery.