146 resultados para Pattern Dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We present a dynamical analysis of the galaxy cluster Abell 1942 based on a set of 128 velocities obtained at the European Southern Observatory. Methods. Data on individual galaxies are presented and the accuracy of the determined velocities as some properties of the cluster are discussed. We have also made use of publicly available Chandra X-ray data. Results. We obtained an improved mean redshift value z = 0.22513 +/- 0.0008 and velocity dispersion sigma = 908(139)(+147) km s(-1). Our analysis indicates that inside a radius of similar to 1.5 h(70)(-1) Mpc (similar to 7 arcmin) the cluster is well relaxed, without any remarkable features and the X-ray emission traces the galaxy distribution fairly well. Two possible optical substructures are seen at similar to 5 arcmin from the centre in the northwest and the southwest directions, but are not confirmed by the velocity field. These clumps are, however, kinematically bound to the main structure of Abell 1942. X-ray spectroscopic analysis of Chandra data resulted in a temperature kT = 5.5+/-0.5 keV and metal abundance Z = 0.33 +/- 0.15 Z(circle dot). The velocity dispersion corresponding to this temperature using the T(X-sigma) scaling relation is in good agreement with the measured galaxy velocities. Our photometric redshift analysis suggests that the weak lensing signal observed to the south of the cluster and previously attributed to a ""dark clump"" is produced by background sources, possibly distributed as a filamentary structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the dynamics of the Universe within the framework of the massive graviton cold dark matter scenario (MGCDM) in which gravitons are geometrically treated as massive particles. In this modified gravity theory, the main effect of the gravitons is to alter the density evolution of the cold dark matter component in such a way that the Universe evolves to an accelerating expanding regime, as presently observed. Tight constraints on the main cosmological parameters of the MGCDM model are derived by performing a joint likelihood analysis involving the recent supernovae type Ia data, the cosmic microwave background shift parameter, and the baryonic acoustic oscillations as traced by the Sloan Digital Sky Survey red luminous galaxies. The linear evolution of small density fluctuations is also analyzed in detail. It is found that the growth factor of the MGCDM model is slightly different (similar to 1-4%) from the one provided by the conventional flat Lambda CDM cosmology. The growth rate of clustering predicted by MGCDM and Lambda CDM models are confronted to the observations and the corresponding best fit values of the growth index (gamma) are also determined. By using the expectations of realistic future x-ray and Sunyaev-Zeldovich cluster surveys we derive the dark matter halo mass function and the corresponding redshift distribution of cluster-size halos for the MGCDM model. Finally, we also show that the Hubble flow differences between the MGCDM and the Lambda CDM models provide a halo redshift distribution departing significantly from the those predicted by other dark energy models. These results suggest that the MGCDM model can observationally be distinguished from Lambda CDM and also from a large number of dark energy models recently proposed in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complicated patterns showing various spatial scales have been obtained in the past by coupling Turing systems in such a way that the scales of the independent systems resonate. This produces superimposed patterns with different length scales. Here we propose a model consisting of two identical reaction-diffusion systems coupled together in such a way that one of them produces a simple Turing pattern of spots or stripes, and the other traveling wave fronts that eventually become stationary. The basic idea is to assume that one of the systems becomes fixed after some time and serves as a source of morphogens for the other system. This mechanism produces patterns very similar to the pigmentation patterns observed in different species of stingrays and other fishes. The biological mechanisms that support the realization of this model are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peritoneal cavity (PerC) is a singular compartment where many cell populations reside and interact. Despite the widely adopted experimental approach of intraperitoneal (i.p.) inoculation, little is known about the behavior of the different cell populations within the PerC. To evaluate the dynamics of peritoneal macrophage (Mempty set) subsets, namely small peritoneal Mempty set (SPM) and large peritoneal Mempty set (LPM), in response to infectious stimuli, C57BL/6 mice were injected i.p. with zymosan or Trypanosoma cruzi. These conditions resulted in the marked modification of the PerC myelo-monocytic compartment characterized by the disappearance of LPM and the accumulation of SPM and monocytes. In parallel, adherent cells isolated from stimulated PerC displayed reduced staining for beta-galactosidase, a biomarker for senescence. Further, the adherent cells showed increased nitric oxide (NO) and higher frequency of IL-12-producing cells in response to subsequent LPS and IFN-gamma stimulation. Among myelo-monocytic cells, SPM rather than LPM or monocytes, appear to be the central effectors of the activated PerC; they display higher phagocytic activity and are the main source of IL-12. Thus, our data provide a first demonstration of the consequences of the dynamics between peritoneal Mempty set subpopulations by showing that substitution of LPM by a robust SPM and monocytes in response to infectious stimuli greatly improves PerC effector activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schroumldinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear ""ship-wave"" pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noise is an intrinsic feature of population dynamics and plays a crucial role in oscillations called phase-forgetting quasicycles by converting damped into sustained oscillations. This function of noise becomes evident when considering Langevin equations whose deterministic part yields only damped oscillations. We formulate here a consistent and systematic approach to population dynamics, leading to a Fokker-Planck equation and the associate Langevin equations in accordance with this conceptual framework, founded on stochastic lattice-gas models that describe spatially structured predator-prey systems. Langevin equations in the population densities and predator-prey pair density are derived in two stages. First, a birth-and-death stochastic process in the space of prey and predator numbers and predator-prey pair number is obtained by a contraction method that reduces the degrees of freedom. Second, a van Kampen expansion in the inverse of system size is then performed to get the Fokker-Planck equation. We also study the time correlation function, the asymptotic behavior of which is used to characterize the transition from the cyclic coexistence of species to the ordinary coexistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic polarizability and optical absorption spectrum of liquid water in the 6-15 eV energy range are investigated by a sequential molecular dynamics (MD)/quantum mechanical approach. The MD simulations are based on a polarizable model for liquid water. Calculation of electronic properties relies on time-dependent density functional and equation-of-motion coupled-cluster theories. Results for the dynamic polarizability, Cauchy moments, S(-2), S(-4), S(-6), and dielectric properties of liquid water are reported. The theoretical predictions for the optical absorption spectrum of liquid water are in good agreement with experimental information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For Au + Au collisions at 200 GeV, we measure neutral pion production with good statistics for transverse momentum, p(T), up to 20 GeV/c. A fivefold suppression is found, which is essentially constant for 5 < p(T) < 20 GeV/c. Experimental uncertainties are small enough to constrain any model-dependent parametrization for the transport coefficient of the medium, e. g., <(q) over cap > in the parton quenching model. The spectral shape is similar for all collision classes, and the suppression does not saturate in Au + Au collisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a stochastic lattice model describing the dynamics of coexistence of two interacting biological species. The model comprehends the local processes of birth, death, and diffusion of individuals of each species and is grounded on interaction of the predator-prey type. The species coexistence can be of two types: With self-sustained coupled time oscillations of population densities and without oscillations. We perform numerical simulations of the model on a square lattice and analyze the temporal behavior of each species by computing the time correlation functions as well as the spectral densities. This analysis provides an appropriate characterization of the different types of coexistence. It is also used to examine linked population cycles in nature and in experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic properties of liquid ammonia are investigated by a sequential molecular dynamics/quantum mechanics approach. Quantum mechanics calculations for the liquid phase are based on a reparametrized hybrid exchange-correlation functional that reproduces the electronic properties of ammonia clusters [(NH(3))(n); n=1-5]. For these small clusters, electron binding energies based on Green's function or electron propagator theory, coupled cluster with single, double, and perturbative triple excitations, and density functional theory (DFT) are compared. Reparametrized DFT results for the dipole moment, electron binding energies, and electronic density of states of liquid ammonia are reported. The calculated average dipole moment of liquid ammonia (2.05 +/- 0.09 D) corresponds to an increase of 27% compared to the gas phase value and it is 0.23 D above a prediction based on a polarizable model of liquid ammonia [Deng , J. Chem. Phys. 100, 7590 (1994)]. Our estimate for the ionization potential of liquid ammonia is 9.74 +/- 0.73 eV, which is approximately 1.0 eV below the gas phase value for the isolated molecule. The theoretical vertical electron affinity of liquid ammonia is predicted as 0.16 +/- 0.22 eV, in good agreement with the experimental result for the location of the bottom of the conduction band (-V(0)=0.2 eV). Vertical ionization potentials and electron affinities correlate with the total dipole moment of ammonia aggregates. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We model interface formation by metal deposition on the conjugated polymer poly-para-phenylene vinylene, studying direct aluminum and layered aluminum-calcium structures Al/PPV and Al/Ca/PPV. To do that we use classical molecular dynamics simulations, checked by ab initio density-functional theory calculations, for selected relevant configurations. We find that Al not only migrates easily into the film, with a strong charge transfer to the neighboring chains, but also promotes rearrangement of the polymer in the interfacial region to the hexagonal structure. On the other hand, our results indicate that a thin Ca layer is sufficient to protect the film and maintain a well-defined metal/polymer interface, and that also a thin Al capping layer may protect the whole from environmental degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed ab initio molecular dynamics simulations to generate an atomic structure model of amorphous hafnium oxide (a-HfO(2)) via a melt-and-quench scheme. This structure is analyzed via bond-angle and partial pair distribution functions. These results give a Hf-O average nearest-neighbor distance of 2.2 angstrom, which should be compared to the bulk value, which ranges from 1.96 to 2.54 angstrom. We have also investigated the neutral O vacancy and a substitutional Si impurity for various sites, as well as the amorphous phase of Hf(1-x)Si(x)O(2) for x=0.25, 0375, and 0.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NiCl(2)-4SC(NH(2))(2) (known as DTN) is a spin-1 material with a strong single-ion anisotropy that is regarded as a new candidate for Bose-Einstein condensation (BEC) of spin degrees of freedom. We present a systematic study of the low-energy excitation spectrum of DTN in the field-induced magnetically ordered phase by means of high-field electron spin resonance measurements at temperatures down to 0.45 K. We argue that two gapped modes observed in the experiment can be consistently interpreted within a four-sublattice antiferromagnet model with a finite interaction between two tetragonal subsystems and unbroken axial symmetry. The latter is crucial for the interpretation of the field-induced ordering in DTN in terms of BEC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a model of classical noncommutative particle in an external electromagnetic field. For this model, we prove the existence of generalized gauge transformations. Classical dynamics in Hamiltonian and Lagrangian form is discussed; in particular, the motion in the constant magnetic field is studied in detail. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3299296]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study trapping and propagation of a matter-wave soliton through the interface between uniform medium and a nonlinear optical lattice. Different regimes for transmission of a broad and a narrow solitons are investigated. Reflections and transmissions of solitons are predicted as a function of the lattice phase. The existence of a threshold in the amplitude of the nonlinear optical lattice, separating the transmission and reflection regimes, is verified. The localized nonlinear surface state, corresponding to the soliton trapped by the interface, is found. Variational approach predictions are confirmed by numerical simulations for the original Gross-Pitaevskii equation with nonlinear periodic potentials.