115 resultados para Pathogenic vibrios
Resumo:
The bacterium Rickettsia rickettsii is the etiological agent of an acute, severe disease called Rocky Mountain spotted fever in the United States or Brazilian spotted fever (BSF) in Brazil. In addition to these two countries, the disease has also been reported to affect humans in Mexico, Costa Rica, Panama, Colombia and Argentina. Like humans, dogs are also susceptible to R. rickettsii infection. However, despite the wide distribution of R. rickettsii in the Western Hemisphere, reports of R. rickettsii-induced illness in dogs has been restricted to the United States. The present study evaluated the pathogenicity for dogs of a South American strain of R. rickettsii. Three groups of dogs were evaluated: group 1 (G1) was inoculated ip with R. rickettsii; group 2 (G2) was infested by R. rickettsii-infected ticks; and the control group (G3) was infested by uninfected ticks. During the study, no clinical abnormalities, Rickettsia DNA or R. rickettsii-reactive antibodies were detected in G3. In contrast, all G1 and G2 dogs developed signs of rickettsial infection, i.e., fever, lethargy, anorexia, ocular lesions, thrombocytopenia, anemia and detectable levels of Rickettsia DNA and R. rickettsii-reactive antibodies in their blood. Rickettsemia started 3-8 days after inoculation or tick infestation and lasted for 3-13 days. Our results indicate that a Brazilian strain of R. rickettsii is pathogenic for dogs, suggesting that canine clinical illness due to R. rickettsii has been unreported in Brazil and possibly in the other South American countries where BSF has been reported among humans.
Resumo:
As pyometra is recognized as one of the main causes of disease and death in the bitch the purposes of this study were to evaluate microbiological and histopathological aspects of canine pyometra and to research the virulence factors of the E. coli isolates identifying possible risks to human health. The microbiological isolation from the intrauterine contents of 100 dogs with pyometra was carried out and the virulence factors in the E. coli strains were identified using PCR method. This study also consisted of the counting of microorganisms colonies forming units in samples of intrauterine content, tests of antimicrobial susceptibility of the E. coli isolates and the histological examination of the uterus. E. coli was the most prevalent microorganism isolated (76.6%) and 120 strains (79.5%) were positive for sfa, 86 (56.9%) were positive for cnf, 87 (57.6%) were positive for pap, 52 (34.4%) were positive for hly, 51 (33.8%) were positive for iuc and 5 (3.3%) were positive for afa genes. One observed more sensitivity of E. coli to norfloxacin, polimixin B, sulphazotrin, chloranfenicol and enrofloxacin. In 42% of the samples of uterine walls where microorganisms were isolated, the sizes of the areas of the inflammatory responses corresponded to 39-56%. Virulence factors were identified in 98.0% of the strains evaluated, demonstrating a high frequency of potentially pathogenic E. coli. It must be considered that dogs are animals that are living in close proximity to man for thousands of years and have an important role in the transmission of E. coli to other animals and to man.
Resumo:
Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. A total of 200 drinking water samples from domestic and public reservoirs and drinking fountains located in São Paulo (Brazil), were analyzed for the presence of Aeromonas. Samples were concentrated by membrane filtration and enriched in APW. ADA medium was used for Aeromonas isolation and colonies were confirmed by biochemical characterization. Strains isolated were tested for hemolysin and toxin production. Aeromonas was detected in 12 samples (6.0%). Aeromonas strains (96) were isolated and identified as: A. caviae (41.7%), A. hydrophila (15.7%), A.allosacharophila (10.4%), A. schubertii (1.0%) and Aeromonas spp. (31.2%).The results revealed that 70% of A. caviae, 66.7% of A. hydrophila, 80% of A. allosacharophila and 46.6% of Aeromonas spp. were hemolytic. The assay for checking production of toxins showed that 17.5% of A. caviae, 73.3% of A. hydrophila, 60% of A. allosacharophila, 100% of A. schubertii, and 33.3% of Aeromonas spp. were able to produce toxins. The results demonstrated the pathogenic potential of Aeromonas, indicating that the presence of this emerging pathogen in water systems is a public health concern
Resumo:
The pathogenic fungus Fusarium graminearum is an ongoing threat to agriculture, causing losses in grain yield and quality in diverse crops. Substantial progress has been made in the identification of genes involved in the suppression of phytopathogens by antagonistic microorganisms; however, limited information regarding responses of plant pathogens to these biocontrol agents is available. Gene expression analysis was used to identify differentially expressed transcripts of the fungal plant pathogen F. graminearum under antagonistic effect of the bacterium Pantoea agglomerans. A macroarray was constructed, using 1014 transcripts from an F. graminearum cDNA library. Probes consisted of the cDNA of F. graminearum grown in the presence and in the absence of P. agglomerans. Twenty-nine genes were either up (19) or down (10) regulated during interaction with the antagonist bacterium. Genes encoding proteins associated with fungal defense and/or virulence or with nutritional and oxidative stress responses were induced. The repressed genes coded for a zinc finger protein associated with cell division, proteins containing cellular signaling domains, respiratory chain proteins, and chaperone-type proteins. These data give molecular and biochemical evidence of response of F. graminearum to an antagonist and could help develop effective biocontrol procedures for pathogenic plant fungi.
Resumo:
The lesion nematode Pratylenchus brachyurus is widespread in cowpea plantations throughout the tropics and sub-tropics. However, the pathogenicity of P. brachyurus on cowpea has been scarcely studied. In this work, it was demonstrated in two glasshouse experiments that an isolate (Pb-20) of P brachyurus was pathogenic to cowpea cv. IPA-206, adversely affecting the plant growth and pod formation and filling. Initial population levels of 5000 and 15 000 nematodes per plant caused reduction of root growth and typical decay of root tissue. The third experiment demonstrated that all six cowpea cultivars selected for evaluation supported reproduction of three isolates of P. brachyurus (Pb-20, Pb-21 and Pb-23) in their roots, although the reproduction factor values obtained indicated that they were dissimilar in their reproductive fitness. Low resistance to R brachyurus was reported for at least one tested cultivar, but apparently of an insufficient degree to be effective for field management of the nematode.
Resumo:
Reproductive failures are still common grounds for complaint by commercial swine producers. Porcine parvovirus (PPV) is associated with different clinical reproductive signs. The aim of the present study was to investigate PPV fetal infection at swine farms having ongoing reproductive performance problems. The presence of virus in fetal tissues was determined by nested-polymerase chain reaction assay directed to the conserved NS1 gene of PPV in aborted fetuses, mummies and stillborns. Fetuses show a high frequency of PPV infection (96.4%; N = 28). In 60.7% of the fetuses, PPV were detected in all tissue samples (lung, heart, thymus, kidney, and spleen). Viral infection differed among fetal tissues, with a higher frequency in the lung and heart (P < 0.05). Fetuses with up to 99 days of gestational age and from younger sows showed a higher frequency of PPV (P < 0.05). No significant difference in the presence of PPV was detected among the three clinical presentations. The results suggest that PPV remains an important pathogenic agent associated with porcine fetal death.
Resumo:
This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was assessed with a bioautography technique. The results showed that bacterial strains, Alcaligenes faecalis MRbS12 and Bacillus cereus MRbS26, had compounds with antifungal bioactivity. The largest inhibition zones for both compounds were located on spots with Rf values below 0.500, indicating that the molecules possibly had polar characteristics. These results suggested that microorganisms found in the environment could have bioprospecting potential.
Resumo:
Background: Treacher Collins syndrome (TCS) is an autosomal dominant craniofacial disorder caused by frameshift deletions or duplications in the TCOF1 gene. These mutations cause premature termination codons, which are predicted to lead to mRNA degradation by nonsense mediated mRNA decay (NMD). Haploinsufficiency of the gene product (treacle) during embryonic development is the proposed molecular mechanism underlying TCS. However, it is still unknown if TCOF1 expression levels are decreased in postembryonic human cells. Methods: We have estimated TCOF1 transcript levels through real time PCR in mRNA obtained from leucocytes and mesenchymal cells of TCS patients (n = 23) and controls (n = 18). Mutational screening and analysis of NMD were performed by direct sequencing of gDNA and cDNA, respectively. Results: All the 23 patients had typical clinical features of the syndrome and pathogenic mutations were detected in 19 of them. We demonstrated that the expression level of TCOF1 is 18-31% lower in patients than in controls (p < 0.05), even if we exclude the patients in whom we did not detect the pathogenic mutation. We also observed that the mutant allele is usually less abundant than the wild type one in mesenchymal cells. Conclusions: This is the first study to report decreased expression levels of TCOF1 in TCS adult human cells, but it is still unknown if this finding is associated to any phenotype in adulthood. In addition, as we demonstrated that alleles harboring the pathogenic mutations have lower expression, we herein corroborate the current hypothesis of NMD of the mutant transcript as the explanation for diminished levels of TCOF1 expression. Further, considering that TCOF1 deficiency in adult cells could be associated to pathologic clinical findings, it will be important to verify if TCS patients have an impairment in adult stem cell properties, as this can reduce the efficiency of plastic surgery results during rehabilitation of these patients.
Resumo:
The T cell immunoglobulin mucin 3 (Tim-3) receptor is highly expressed on HIV-1-specific T cells, rendering them partially ""exhausted'' and unable to contribute to the effective immune mediated control of viral replication. To elucidate novel mechanisms contributing to the HTLV-1 neurological complex and its classic neurological presentation called HAM/TSP (HTLV-1 associated myelopathy/tropical spastic paraparesis), we investigated the expression of the Tim-3 receptor on CD8(+) T cells from a cohort of HTLV-1 seropositive asymptomatic and symptomatic patients. Patients diagnosed with HAM/TSP down-regulated Tim-3 expression on both CD8(+) and CD4(+) T cells compared to asymptomatic patients and HTLV-1 seronegative controls. HTLV-1 Tax-specific, HLA-A*02 restricted CD8(+) T cells among HAM/TSP individuals expressed markedly lower levels of Tim-3. We observed Tax expressing cells in both Tim-3(+) and Tim-3(-) fractions. Taken together, these data indicate that there is a systematic downregulation of Tim-3 levels on T cells in HTLV-1 infection, sustaining a profoundly highly active population of potentially pathogenic T cells that may allow for the development of HTLV-1 complications.
Resumo:
Background: It has been well documented over past decades that interaction of pathogens with the extracellular matrix (ECM) plays a primary role in host cell attachment and invasion. Adherence to host tissues is mediated by surface-exposed proteins expressed by the microorganisms during infection. The mechanisms by which pathogenic leptospires invade and colonize the host remain poorly understood since few virulence factors contributing to the pathogenesis of the disease have been identified. Whole-genome sequencing analysis of L. interrogans allowed identification of a repertoire of putative leptospiral surface proteins. Results: Here, we report the identification and characterization of a new leptospiral protein that exhibits extracellular matrix-binding properties, called as Lsa21 (leptospiral surface adhesin, 21 kDa). Compatible with its role in adhesion, the protein was shown to be surface-exposed by indirect immunofluorescence. Attachment of Lsa21 to laminin, collagen IV, and plasma fibronectin was specific and dose dependent. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. The gene coding for Lsa21 is present in pathogenic strains belonging to the L. interrogans species but was not found in the saprophytic L. biflexa serovar Patoc strain Patoc 1. Loss of gene expression occurs upon culture attenuation of pathogenic strains. Environmental factors such as osmolarity and temperature affect Lsa21 expression at the transcriptional level. Moreover, anti-Lsa21 serum labeled liver and kidney tissues of human fatal cases of leptospirosis. Conclusion: Our data suggest a role of Lsa21 in the pathogenesis of leptospirosis.
Resumo:
Sinovitis in Scleroderma (SSc) is rare, usually aggressive and fully resembles rheumatoid arthritis. Experimental models of SSc have been used in an attempt to understand its pathogenesis. Previous studies done in our laboratory had already revealed the presence of a synovial remodeling process in rabbits immunized with collagen V. To validate the importance of collagen type V and to explore the quantitative relationship between this factor and synovia remodeling as well as the relationship between collagen type V and other collagens, we studied the synovial tissue in immunized rabbits. Rabbits (N= 10) were immunized with collagen V plus Freund's adjuvant and compared with animals inoculated with adjuvant only (N= 10). Synovial tissues were submitted to histological analysis, immunolocalization to collagen I, III and V and biochemical analysis by eletrophoresis, immunoblot and densitometric method. The synovial tissue presented an intense remodeling process with deposits of collagen types I, III and V after 75 and 120 days of immunization, mainly distributed around the vessels and interstitium of synovial extracellular matrix. Densitometric analysis confirmed the increased synthesis of collagen I, III and V chains (407.69 +/- 80.31; 24.46 +/- 2.58; 70.51 +/- 7.66, respectively) in immunized rabbits when compared with animals from control group (164.91 +/- 15.67; 12.89 +/- 1.05; 32 +/- 3.57) (p<0.0001). We conclude that synovial remodeling observed in the experimental model can reflect the articular compromise present in patients with scleroderma. Certainly, this experimental model induced by collagen V immunization will bring new insights in to pathogenic mechanisms and allow the testing of new therapeutic strategies to ameliorate the prognosis for scleroderma patients.
Resumo:
AIM: To compare the performance of different types of abdominal drains used in bariatric surgery. METHODS: A vertical banded Roux-en-Y gastric bypass was performed in 33 morbidly obese patients. Drainage of the peritoneal cavity was performed in each case using three different types of drain selected in a randomized manner: a latex tubular drain, a Watterman tubulolaminar drain, and a silicone channeled drain. Drain permeability, contamination of the drained fluid, ease of handling, and patient discomfort were evaluated postoperatively over a period of 7 d. RESULTS: The patients with the silicone channeled drain had larger volumes of drainage compared to patients with tubular and tubulolaminar drains between the third and seventh postoperative days. In addition, a lower incidence of discomfort and of contamination with bacteria of a more pathogenic profile was observed in the patients with the silicone channeled drain. CONCLUSION: The silicone channeled drain was more comfortable and had less chance of occlusion, which is important in the detection of delayed dehiscence. (C) 2009 The WJG Press and Baishideng. All rights reserved.
Resumo:
Background: Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin. Methodology/Principal Findings: We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin. Conclusions/Significance: PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.
Resumo:
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K(D), 68.8 +/- 25.2 nM and 167.39 +/- 60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a KD of 55.4 +/- 15.9 nM to laminin and of 290.8 +/- 11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.
Resumo:
The 60kDa heat shock protein family, Hsp60, constitutes an abundant and highly conserved class of molecules that are highly expressed in chronic-inflammatory and autoimmune processes. Experimental autoimmune uveitis [EAU] is a T cell mediated intraocular inflammatory disease that resembles human uveitis. Mycobacterial and homologous Hsp60 peptides induces uveitis in rats, however their participation in aggravating the disease is poorly known. We here evaluate the effects of the Mycobacterium leprae Hsp65 in the development/progression of EAU and the autoimmune response against the eye through the induction of the endogenous disequilibrium by enhancing the entropy of the immunobiological system with the addition of homologous Hsp. B10. RIII mice were immunized subcutaneously with interphotoreceptor retinoid-binding protein [IRBP], followed by intraperitoneally inoculation of M. leprae recombinant Hsp65 [rHsp65]. We evaluated the proliferative response, cytokine production and the percentage of CD4(+)IL-17(+), CD4(+)IFN-gamma(+) and CD4(+)Foxp3(+) cells ex vivo, by flow cytometry. Disease severity was determined by eye histological examination and serum levels of anti-IRBP and anti-Hsp60/65 measured by ELISA. EAU scores increased in the Hsp65 group and were associated with an expansion of CD4(+)IFN-gamma(+) and CD4(+)IL-17(+) T cells, corroborating with higher levels of IFN-gamma. Our data indicate that rHsp65 is one of the managers with a significant impact over the immune response during autoimmunity, skewing it to a pathogenic state, promoting both Th1 and Th17 commitment. It seems comprehensible that the specificity and primary function of Hsp60 molecules can be considered as a potential pathogenic factor acting as a whistleblower announcing chronic-inflammatory diseases progression.