145 resultados para POSS, Lactide, PEG hydrogel, ATR-FTIR, Degradation, Hydrolysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes a photo-reactor to perform in line degradation of organic compounds by photo-Fenton reaction using Sequential Injection Analysis (SIA) system. A copper phthalocyanine-3,4',4²,4²¢-tetrasulfonic acid tetrasodium salt dye solution was used as a model compound for the phthalocyanine family, whose pigments have a large use in automotive coatings industry. Based on preliminary tests, 97% of color removal was obtained from a solution containing 20 µmol L-1 of this dye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new natural product was isolated from Piper arboreum (Piperaceae) leaves, the methyl 3-geranyl-4-hydroxybenzoate (1). The metabolism of P. arboreum leaves by Naupactus bipes beetle (Germar, 1824 - Coleoptera: Curculionidae) led to the hydrolysis of 1 to 3-geranyl-4-hydroxybenzoic acid (2). The structures of both compounds were determined based on spectroscopic analysis (¹H and 13C NMR, MS, and IR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends formed by electrochemical polymerization of polypyrrole (PPy) into polyacrylamide (PAAm) hydrogels were used as devices for controlled drug release. The influence of several parameters in the synthesis, such as type of hydrogel matrix and polymerization conditions was studied by using a fractional factorial design. The final goal was to obtain an adequate device for use in controlled release tests, based on electrochemical potential control. For controlled release tests, Safranin was used as model drug and release curves (amount of drug vs. time) have shown that these blends are promising materials for this use. The optimized blends obtained were characterized by cyclic voltammetry and Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Lignin and hemicelluloses are the major components limiting enzyme infiltration into cell walls. Determination of the topochemical distribution of lignin and aromatics in sugar cane might provide important data on the recalcitrance of specific cells. We used cellular ultraviolet (UV) microspectrophotometry (UMSP) to topochemically detect lignin and hydroxycinnamic acids in individual fiber, vessel and parenchyma cell walls of untreated and chlorite-treated sugar cane. Internodes, presenting typical vascular bundles and sucrose-storing parenchyma cells, were divided into rind and pith fractions. Results: Vascular bundles were more abundant in the rind, whereas parenchyma cells predominated in the pith region. UV measurements of untreated fiber cell walls gave absorbance spectra typical of grass lignin, with a band at 278 nm and a pronounced shoulder at 315 nm, assigned to the presence of hydroxycinnamic acids linked to lignin and/or to arabino-methylglucurono-xylans. The cell walls of vessels had the highest level of lignification, followed by those of fibers and parenchyma. Pith parenchyma cell walls were characterized by very low absorbance values at 278 nm; however, a distinct peak at 315 nm indicated that pith parenchyma cells are not extensively lignified, but contain significant amounts of hydroxycinnamic acids. Cellular UV image profiles scanned with an absorbance intensity maximum of 278 nm identified the pattern of lignin distribution in the individual cell walls, with the highest concentration occurring in the middle lamella and cell corners. Chlorite treatment caused a rapid removal of hydroxycinnamic acids from parenchyma cell walls, whereas the thicker fiber cell walls were delignified only after a long treatment duration (4 hours). Untreated pith samples were promptly hydrolyzed by cellulases, reaching 63% of cellulose conversion after 72 hours of hydrolysis, whereas untreated rind samples achieved only 20% hydrolyzation. Conclusion: The low recalcitrance of pith cells correlated with the low UV-absorbance values seen in parenchyma cells. Chlorite treatment of pith cells did not enhance cellulose conversion. By contrast, application of the same treatment to rind cells led to significant removal of hydroxycinnamic acids and lignin, resulting in marked enhancement of cellulose conversion by cellulases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organosolv lignins can replace petroleum chemicals such as phenol either partially or totally in various applications. Eight lignins, seven of which corresponded to the ethanol-water fractionation of bagasse and the other to a reference lignin (Alcell (R)) were analyzed with the aim to evaluate their chemical and physicochemical characteristics. The purity of the lignin fractions was determined by high pressure liquid chromatography (HPLC) and by ash content. Fourier Transform-Infrared Spectroscopy (FTIR) techniques and differential UV spectroscopy were applied to identify the chemical groups in the lignin samples. The molecular weight distribution was determined by size exclusion chromatography (HPSEC). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to determine the mass loss due to the high temperature treatment. The lignins studied showed the presence of p-hydroxyphenyl (H unit) and a greater proportion of guaiacyl (G unit) moieties, lower purity, similar or greater amount of phenolic hydroxyl groups, and higher degradation temperatures, than the Alcell (R) lignin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An environmentally friendly analytical procedure with high sensitivity for determination of carbaryl pesticide in natural waters was developed. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. A long pathlength (100 cm) flow cell based on a liquid core waveguide (LCW) was employed to increase the sensitivity in detection of the indophenol formed from the reaction between carbaryl and p-aminophenol (PAP). A clean-up step based on cloud-point extraction was explored to remove the interfering organic matter, avoiding the use of toxic organic solvents. A linear response was observed within the range 5-200 mu g L(-1) and the detection limit, coefficient of variation and sampling rate were estimated as 1.7 mu g L(-1) (99.7% confidence level), 0.7% (n=20) and 55 determinations per hour, respectively. The reagents consumption was 1.9 mu g of PAP and 5.7 mu g of potassium metaperiodate, with volume of 2.6 mL of effluent per determination. The proposed procedure was selective for the determination of carbaryl, without interference from other carbamate pesticides. Recoveries within 84% and 104% were estimated for carbaryl spiked to water samples and the results obtained were also in agreement with those found by a batch spectrophotometric procedure at the 95% confidence level. The waste of the analytical procedure was treated with potassium persulphate and ultraviolet irradiation, yielding a colorless residue and a decrease of 94% of total organic carbon. In addition, the residue after treatment was not toxic for Vibrio fischeri bacteria. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar and pulsed flows typical of multi-commuted and multi-pumping flow systems, were evaluated in relation to analytical procedures carried out at high temperatures. As application, the spectrophotometric determination of total reducing sugars (TRS, hydrolyzed sucrose plus reducing sugars) in sugar-cane juice and molasses was selected. The method involves in-line hydrolysis of sucrose and alkaline degradation of the reducing sugars at about 98 degrees C. Better results were obtained with pulsed flows, due to the efficient radial mass transport inherent to the multi-pumping flow system. The proposed system presents favorable characteristics of ruggedness, analytical precision (r.s.d. < 0.013 for typical samples), stability (no measurable baseline drift during 4-h working periods), linearity of the analytical curve (r > 0.992, n = 5, 0.05-0.50% w/v TRS) and sampling rate (65 h(-1)). Results are in agreement with ion chromatography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of the myocardium to an ischaemic insult is regulated by two highly homologous protein kinase C (PKC) isozymes, delta and epsilon PKC. Here, we determined the spatial and temporal relationships between these two isozymes in the context of ischaemia/reperfusion (I/R) and ischaemic preconditioning (IPC) to better understand their roles in cardioprotection. Using an ex vivo rat model of myocardial infarction, we found that short bouts of ischaemia and reperfusion prior to the prolonged ischaemic event (IPC) diminished delta PKC translocation by 3.8-fold and increased epsilon PKC accumulation at mitochondria by 16-fold during reperfusion. In addition, total cellular levels of delta PKC decreased by 60 +/- 2.7% in response to IPC, whereas the levels of epsilon PKC did not significantly change. Prolonged ischaemia induced a 48 +/- 11% decline in the ATP-dependent proteasomal activity and increased the accumulation of misfolded proteins during reperfusion by 192 +/- 32%; both of these events were completely prevented by IPC. Pharmacological inhibition of the proteasome or selective inhibition of epsilon PKC during IPC restored delta PKC levels at the mitochondria while decreasing epsilon PKC levels, resulting in a loss of IPC-induced protection from I/R. Importantly, increased myocardial injury was the result, in part, of restoring a delta PKC-mediated I/R pro-apoptotic phenotype by decreasing pro-survival signalling and increasing cytochrome c release into the cytosol. Taken together, our findings indicate that IPC prevents I/R injury at reperfusion by protecting ATP-dependent 26S proteasomal function. This decreases the accumulation of the pro-apoptotic kinase, delta PKC, at cardiac mitochondria, resulting in the accumulation of the pro-survival kinase, epsilon PKC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brewer`s spent grain components (cellulose, hemicellulose and lignin) were fractionated in a two-step chemical pretreatment process using dilute sulfuric acid and sodium hydroxide solutions. The cellulose pulp produced was hydrolyzed with a cellulolytic complex, Celluclast 1.5 L, at 45 degrees C to convert the cellulose into glucose. Several conditions were examined: agitation speed (100, 150 and 200 rpm), enzyme loading (5, 25 and 45 FPU/g substrate), and substrate concentration (2, 5 and 8% w/v), according to a 2(3) full factorial design aiming to maximize the glucose yield. The obtained results were interpreted by analysis of variance and response surface methodology. The optimal conditions for enzymatic hydrolysis of brewer`s spent grain were identified as 100 rpm, 45 FPU/g and 2% w/v substrate. Under these conditions, a glucose yield of 93.1% and a cellulose conversion (into glucose and cellobiose) of 99.4% was achieved. The easiness of glucose release from BSG makes this substrate a raw material with great potential to be used in bioconversion processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymatic hydrolysis of brewer`s spent grain in three different forms: original (untreated), pretreated by dilute acid (cellulignin), and pretreated by a sequence of dilute acid and dilute alkali (cellulose pulp), was studied to verify the effect of hemicellulose and lignin on cellulose conversion into glucose. The hydrolysis was carried out using a commercial cellulase concentrate (Celluclast 1.5 L) in an enzyme/substrate ratio of 45 FPU/g, 2% (w/v) substrate concentration, 45 degrees C for 96 h. According to the results, the cellulose hydrolysis was affected by the presence of hemicellulose and/or lignin in the sample. The cellulose conversion ratio (defined as glucose yield + cellobiose yield) from cellulignin was 3.5-times higher than that from untreated sample, whereas from cellulose pulp such value was 4-times higher, correspondent to 91.8% (glucose yield of 85.6%). This best result was probably due to the strong modification in the material structure caused by the hemicellulose and lignin removal from the sample. As a consequence, the cellulose fibers were separated being more susceptible to the enzymatic attack. It was concluded that the lower the hemicellulose and lignin contents in the sample, the higher the efficiency of cellulose hydrolysis. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different gelation times (4, 18, 24 and 48 h) were used for the preparation of silica sol-gel supports and encapsulated Candida rugosa lipase using tetraethoxysilane (TEOS) as precursor. The hydrophobic matrices and immobilized lipases produced were characterized with regard to pore volume and size by nitrogen adsorption (BJH method), weight loss upon heating (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), chemical composition (FTIR) and percentage of hydrolysis (POH%) of olive oil. These structural parameters were found to change with the gelation time, but no direct relation was found between the percentage of oil hydrolysis (POH%) and the gelation time. The best combination of high thermal stability and high POH% (99.5%) occurred for encapsulated lipase produced with 24 h gelation time. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemithermomechanical (CTM) processing was used to pretreat sugarcane bagasse with the aim of increasing cell wall accessibility to hydrolytic enzymes. Yields of the pretreated samples were in the range of 75-94%. Disk refining and alkaline-CTM and alkaline/sulfite-CTM pretreatments yielded pretreated materials with 21.7, 17.8, and 15.3% of lignin, respectively. Hemicellulose content was also decreased to some extent. Fibers of the pretreated materials presented some external fibrillation, fiber curling, increased swelling, and high water retention capacity. Cellulose conversion of the alkaline-CTM- and alkaline/sulfite-CTM-pretreated samples reached 50 and 85%, respectively, after 96 h of enzymatic hydrolysis. Two samples with low initial lignin content were also evaluated after the mildest alkaline-CTM pretreatment. One sample was a partially delignified mill-processed bagasse. The other was a sugarcane hybrid selected in a breeding program. Samples with lower initial lignin content were hydrolyzed considerably faster in the first 24 h of enzymatic digestion. For example, enzymatic hydrolysis of the sample with the lowest initial lignin content (14.2%) reached 64% cellulose conversion after only 24 h of hydrolysis when compared with the 30% observed for the mill-processed bagasse containing an initial lignin content of 24.4%. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 27: 395-401, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzymatic hydrolysis of sugarcane bagasse was investigated by treating a peroxide-alkaline bagasse with a pineapple stem juice, xylanase and cellulase. Pre-treatment procedures of sugarcane bagasse with alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2(4) factorial designs, with pre-treatment time, temperature, magnesium sulfate and hydrogen peroxide concentration as factors. The responses evaluated were the yield of cellobiose and glucose released from pretreated bagasse after enzymatic hydrolysis. The results show that the highest enzymatic conversion was obtained for bagasse using 2% hydrogen peroxide at 60 degrees C for 16 h in the presence of 0.5% magnesium sulfate. Bagasse (5%) was treated with pineapple stem extract, which contains mixtures of protease and esterase, in combination with xylanase and cellulase. It was observed that the amount of glucose and cellobiose released from bagasse increased with the mixture of enzymes. It is believed that the enzymes present in pineapple extracts are capable of hydrolyze specific linkages that would facilitate the action of digesting plant cell walls enzymes. This increases the amount of glucose and other hexoses that are released during the enzymatic treatment and also reduces the amount of cellulase necessary in a typical hydrolysis. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugarcane bagasse hemicellulose was isolated in a one-step chemical extraction using hydrogen peroxide in alkaline media. The polysaccharide containing 80.9% xylose and small amounts of L-arabinose, 4-O-methyl-D-glucuronic acid and glucose, was hydrolyzed by crude enzymatic extracts from Thermoascus aurantiacus at 50 degrees C. Conditions of enzymatic hydrolysis leading to the best yields of xylose and xylooligosaccharides (DP 2-5) were investigated using substrate concentration in the range 0.5-3.5% (w/v), enzyme load 40-80 U/g of the substrate, and reaction time from 3 to 96 h, applying a 22 factorial design. The maximum conversion to xylooligosaccharides (37.1%) was obtained with 2.6% of substrate and xylanase load of 60 U/g. The predicted maximum yield of xylobiose by a polynomial model was 41.6%. Crude enzymatic extract of T. aurantiacus generate from sugarcane bagasse hemicellulose 39% of xylose, 59% of xylobiose, and 2% of other xylooligosaccharides.