41 resultados para POLYETHYLENE FRACTIONS
Resumo:
The microphase structure of a series of polystyrene-b-polyethylene oxide-b-polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid-state NMR, DSC, wide and small angle X-ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethyleneoxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and (1)H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48:55-64,2010
Resumo:
Let L be a function field over the rationals and let D denote the skew field of fractions of L[t; sigma], the skew polynomial ring in t, over L, with automorphism sigma. We prove that the multiplicative group D(x) of D contains a free noncyclic subgroup.
Resumo:
Urban particulate matter (UPM) contributes to lung cancer incidence. Here, we have studied the mutagenic activity and DNA adduct-forming ability of fractionated UPM extractable organic matter (EOM). UPM was collected with a high-volume sampler in June 2004 at two sites, one at street level adjacent to a roadway and the other inside a park within the urban area of the city of Sao Paulo, Brazil. UPM was extracted using dichloromethane, and the resulting EOM was separated by HPLC to obtain PAH, nitro-PAH, and oxy-PAH fractions which were tested for mutagenicity with the Salmonella strains TA98 and YG1041 with and without S9 metabolic activation. The PAH fraction from both sites showed negligible mutagenic activity in both strains. The highest mutagenic activity was found for the nitro-PAH fraction using YG1041 without metabolic activation; however, results were comparable for both sites. The nitro-PAH and oxy-PAH fractions were incubated with calf thymus DNA under reductive conditions appropriate for the activation of nitro aromatic compounds, then DNA adduct patterns and levels were determined with thin-layer chromatography (TLC) (32)p-postlabeling method using two enrichment procedures-nuclease PI digestion and butanol extraction. Reductively activated fractions from both sites produced diagonal radioactive zones (DRZ) of putative aromatic DNA adducts on thin layer plates with both enrichment procedures. No such DRZ were observed in control experiments using fractions from unexposed filters or from incubations without activating system. Total adduct levels produced by the nitro-PAH fractions were similar for both sites ranging from 30 to 45 adducts per 10(8) normal nucleotides. In contrast, the DNA binding of reductively activated oxy-PAH fractions was three times higher and the adduct pattern consisted of multiple discrete spots along the diagonal line on the thin layer plates. However, DNA adduct levels were not significantly different between the sampling sites. Both samples presented the same levels of mutagenic activity. The response in the Salmonella assay was typical of nitroaromatics. Although, more mutagenic activity was related to the nitro-PAH fraction in the Salmonella assay, the oxy-PAH fractions showed the highest DNA adduct levels. More studies are needed to elucidate the nature of the genotoxicants occurring in Sao Paulo atmospheric samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The difficulty of preparing monodisperse lignin fractions on a large scale is a limiting factor in many applications. The present paper addresses this problem by examining the properties and size-exclusion behavior of lignin isolated by the acetosolv pulping process from post-extraction crushed sugarcane bagasse. The isolated lignin was subjected to a solvent pretreatment, followed by preparative gel permeation chromatography fractionation. The fractions were analyzed by high-performance size-exclusion chromatography (HPSEC) and these samples showed a great decrease in polydispersity, compared to the original acetosolv lignin. Several fractions of very low polydispersity, close to unity, were employed as calibration curve standards in HPSEC analysis. This original analytical approach allowed calibration with these lignin fractions to be compared with the polystyrene standards that are universally employed for lignin molecular mass determination. This led to a noteworthy result, namely that the lignin fractions and polystyrene standards showed very similar behavior over a large range of molecular masses in a typical HPSEC analysis of acetosolv lignin. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Low-density polyethylene was filled with cellulose fibres from sugar cane bagasse obtained from organosolv/supercritical carbon dioxide pulping process. The fibres were also used after chemical modification with octadecanoyl and dodecanoyl chloride acids. The morphology, thermal properties, mechanical properties in both the linear and nonlinear range, and the water absorption behaviour of ensuing composites were tested. The evidence of occurrence of the chemical modification was checked by X-ray photoelectron spectrometry. The degree of polymerisation of the fibres and their intrinsic properties (zero tensile strength) were determined. It clearly appeared that the surface chemical modification of cellulose fibres resulted in improved interfacial adhesion with the matrix and higher dispersion level. However, composites did not show improved mechanical performances when compared to unmodified fibres. This surprising result was ascribed to the strong lowering of the degree of polymerisation of cellulose fibres (as confirmed by the drastic decrease of their zero tensile strength) after chemical treatment despite the mild conditions used. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The acid hydrolysis of cellulose with crystalline and amorphous fractions is analyzed on the basis of autocatalytic model with a positive feedback of acid production from the degraded biopolymer. In the condition of low acid rate production compared with hydrolysis rate, both fraction of cellulose decrease exponentially with linear and cubic time dependence, and the normalized number of scissions per cellulose chain follows a sigmoid behavior with reaction time. The model predicts that self generated acidic compounds from cellulose accelerate the degradation of the biopolymer. However, if the acidic compounds produced are volatile species, then their release under low pressure will reduce the global rate of degradation of cellulose toward its intrinsic rate value determined by the residual acid catalyst present in the starting material.
Resumo:
The surface of ramie cellulose whiskers has been chemically modified by grafting organic acid chlorides presenting different lengths of the aliphatic chain by an esterification reaction. The occurrence of the chemical modification was evaluated by FTIR and X-ray photoelectron spectroscopies, elemental analysis and contact angle measurements. The crystallinity of the particles was not altered by the chain grafting, but it was shown that covalently grafted chains were able to crystallize at the cellulose surface when using C18. Both unmodified and functionalized nanoparticles were extruded with low density polyethylene to prepare nanocomposite materials. The homogeneity of the ensuing nanocomposites was found to increase with the length of the grafted chains. The thermomechanical properties of processed nanocomposites were studied by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA) and tensile tests. A significant improvement in terms of elongation at break was observed when sufficiently long chains were grafted on the surface of the nanoparticles. It was ascribed to improved dispersion of the nanoparticles within the LDPE matrix. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The present study aimed to compare the fluoride (F-) release pattern of a nanofilled resin-modified glass ionomer cement (GIC) (Ketac N100 - KN) with available GICs used in dental practice (resin-modified GIC - Vitremer - V; conventional GIC - Ketac Molar - KM) and a nanofilled resin composite (Filtek Supreme - RC). Discs of each material (n=6) were placed into 4 mL of deionized water in sealed polyethylene vials and shaken, for 15 days. F- release (μg F-/cm²) was measured each day using a fluoride-ion specific electrode. Cumulative F- release means were statistically analyzed by linear regression analysis. In order to analyze the differences among materials and the influence of time in the daily F- release, 2-way ANOVA test was performed (α=0.05). The linear fits between the cumulative F- release profiles of RC and KM and time were weak. KN and V presented a strong relationship between cumulative F- release and time. There were significant differences between the daily F- release overtime up to the third day only for GICs materials. The daily F- release means for RC were similar overtime. The results indicate that the F- release profile of the nanofilled resin-modified GIC is comparable to the resin-modified GIC.
Resumo:
This study evaluated the response of the subcutaneous connective tissue of BALB/c mice to root filling materials indicated for primary teeth: zinc oxide/eugenol cement (ZOE), Calen paste thickened with zinc oxide (Calen/ZO) and Sealapex sealer. The mice (n=102) received polyethylene tube implants with the materials, thereby forming 11 groups, as follows: I, II, III: Calen/ZO for 7, 21 and 63 days, respectively; IV, V, VI: Sealapex for 7, 21 and 63 days, respectively; VII, VIII, IX: ZOE for 7, 21 and 63 days, respectively; X and XI: empty tube for 7 and 21 days, respectively. The biopsied tissues were submitted to histological analysis (descriptive analysis and semi-quantitative analysis using a scoring system for collagen fiber formation, tissue thickness and inflammatory infiltrate). A quantitative analysis was performed by measuring the area and thickness of the granulomatous reactionary tissue (GRT). Data were analyzed by Kruskal-Wallis, ANOVA and Tukey's post-hoc tests (?=0.05). There was no significant difference (p>0.05) among the materials with respect to collagen fiber formation or GRT thickness. However, Calen/ZO produced the least severe inflammatory infiltrate (p<0.05). The area of the GRT was significantly smaller (p<0.05) for Calen/ZO and Sealapex. In conclusion, Calen/ZO presented the best tissue reaction, followed by Sealapex and ZOE.
Resumo:
This study aimed to assess the response of apical and periapical tissues of dogs' teeth after root canal filling with different materials. Forty roots from dogs' premolars were prepared biomechanically and assigned to 4 groups filled with: Group I: commercial calcium hydroxide and polyethylene glycol-based paste (Calen®) thickened with zinc oxide; Group II: paste composed of iodoform, Rifocort® and camphorated paramonochlorophenol; Group III: zinc oxide-eugenol cement; Group IV: sterile saline. After 30 days, the samples were subjected to histological processing. The histopathological findings revealed that in Groups I and IV the apical and periapical regions exhibited normal appearance, with large number of fibers and cells and no resorption of mineralized tissues. In Group II, mild inflammatory infiltrate and mild edema were observed, with discrete fibrogenesis and bone resorption. Group III showed altered periapical region and thickened periodontal ligament with presence of inflammatory cells and edema. It may be concluded that the Calen paste thickened with zinc oxide yielded the best tissue response, being the most indicated material for root canal filling of primary teeth with pulp vitality.
Resumo:
This study was evaluated the response of subcutaneous connective tissue of isogenic mice to calcium hydroxide-based pastes with chlorhexidine digluconate (CHX). Seventy isogenic male BALB/c mice aged 6-8 weeks and weighing 15-20 g were randomly assigned to 8 groups. The animals received polyethylene tube implants as follows: Groups I, II, and III (n=10) - Calen® paste mixed with 0.4% CHX (experimental paste; Calen/CHX) for 7, 21, and 63 days, respectively; Groups IV, V, and VI (n=10) - UltraCal™ paste mixed with 2% CHX (experimental paste supplied by Ultradent Products Inc.; Ultracal/CHX) for 7, 21, and 63 days, respectively; and Groups VII and VIII (n=5): empty tube for 7 and 21 days, respectively. At the end of the experimental periods, the implants were removed together with the surrounding tissues (skin and subcutaneous connective tissue). The biopsied tissues were subjected to routine processing for histological analysis. Using a descriptive analysis and a four-point (0-3) scoring system, the following criteria were considered for qualitative and quantitative analysis of the tissue around the implanted materials: collagen fiber formation, tissue thickness and inflammatory infiltrate. A quantitative analysis was performed by measuring the thickness (µm), area (µm²) and perimeter (µm) of the reactionary granulomatous tissue formed at the tube ends. Data were analyzed statistically by the Kruskal-Wallis test and Dunn's post-test (α=0.05). Calen/CHX showed biocompatibility with the subcutaneous and reactionary tissues, with areas of discrete fibrosis and normal conjunctive fibrous tissue, though without statistically significant difference (p>0.05) from the control groups. In Groups I to III, there was a predominance of score 1, while in Groups IV to VI scores 2 and 3 predominated for all analyzed parameters. UltraCal/CHX, on the other hand, induced the formation of an inflammatory infiltrate and abundant exudate, suggesting a persistent residual aggression from the material, even 63 days after implant placement. In conclusion, the Calen paste mixed with 0.4% CHX allowed an adequate tissue response, whereas the UltraCal paste mixed with 2% CHX showed unsatisfactory results.