35 resultados para PARENTERAL LIPID EMULSIONS
Resumo:
Intermolecular associations between a cationic lipid and two model polymers were evaluated from preparation and characterization of hybrid thin films cast on silicon wafers. The novel materials were prepared by spin-coating of a chloroformic solution of lipid and polymer on silicon wafer. Polymers tested for miscibility with the cationic lipid dioctadecyldimethylammonium bromide (DODAB) were polystyrene (PS) and poly(methyl methacrylate) (PMMA). The films thus obtained were characterized by ellipsometry, wettability, optical and atomic force microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and activity against Escherichia coli. Whereas intermolecular ion-dipole interactions were available for the PMMA-DODAB interacting pair producing smooth PMMA-DODAB films, the absence of such interactions for PS-DODAB films caused lipid segregation, poor film stability (detachment from the silicon wafer) and large rugosity. In addition, the well-established but still remarkable antimicrobial DODAB properties were transferred to the novel hybrid PMMA/DODAB coating, which is demonstrated to be highly effective against E. coli.
Resumo:
Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25,15 and 9 ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1 mLL(-1)) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill`s catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde. MDA), but influenced diesel related responses. At 25 ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25 ppt and 1 mLL(-1) diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35 ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25 ppt salinity. The MDA quickly returned to basal levels after 24 h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1 mLL(-1) diesel was observed only at 35 ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Liposomes have been used as adjuvants since 1974. One major limitation for the use of liposomes in oral vaccines is the lipid structure instability caused by enzyme activities. Our aim was to combine liposomes that could encapsulate antigens (i.e., Dtxd, diphtheria toxoid) with chitosan, which protects the particles and promotes mucoadhesibility. We employed physical techniques to understand the process by which liposomes (SPC: Cho, 3: 1) can be sandwiched with chitosan (Chi) and stabilized by PVA (poly-vinylic alcohol), which are biodegradable, biocompatible polymers. Round, smooth-surfaced particles of REVs-Chi (reversed-phase vesicles sandwiched by Chi) stabilized by PVA were obtained. The REVs encapsulation efficiencies (Dtxd was used as the antigen) were directly dependent on the Chi and PVA present in the formulation. Chi adsorption on the REVs surface was accompanied by an increase of zeta-potential. In contrast, PVA adsorption on the REVs-Chi surface was accompanied by a decrease of zeta-potential. The presence of Dtxd increased the Chi surface-adsorption efficiency. The PVA affinity by mucine was 2,000 times higher than that observed with Chi alone and did not depend on the molecule being in solution or adsorbed on the liposomal surface. The liberation of encapsulated Dtxd was retarded by encapsulation within REVs-Chi-PVA. These results lead us to conclude that these new, stabilized particles were able to be adsorbed by intestinal surfaces, resisted degradation, and controlled antigen release. Therefore, REVs-Chi-PVA particles can be used as an oral delivery adjuvant.
Resumo:
Hybrid nanoparticles from cationic lipid and polymers were prepared and characterized regarding physical properties and antimicrobial activity. Carboxymethylcellulose (CMC) and polydiallyldimethylammonium chloride (PDDA) were sequentially added to cationic bilayer fragments (BF) prepared from ultrasonic dispersion in water of the synthetic and cationic lipid dioctadecyldimethylammonium bromide (DODAB). Particles thus obtained were characterized by dynamic light-scattering for determination of z-average diameter (Dz) and zeta-potential (zeta). Antimicrobial activity of the DODAB BF/CMC/PDDA particles against Pseudomonas aeruginosa or Staphylococcus aureus was determined by plating and CFU counting over a range of particle compositions. DODAB BF/CMC/PDDA particles exhibited sizes and zeta-potentials strictly dependent on DODAB, CM C, and PDDA concentrations. At 0.1 mM DODAB, 0.1 mg/mL CMC, and 0.1 mg/mL PDDA, small cationic particles with Dz = 100 nm and zeta = 30 mV were obtained. At 0.5 mM DODAB, 0.5 mg/mL CMC and 0.5 mg/mL PDDA, large cationic particles with Dz = 470 nm and zeta= 50 mV were obtained. Both particulates were highly reproducible regarding physical properties and yielded 0% of p. aeruginosa viability (10(7) CFU/mL) at 1 or 2 mu g/mL PDDA dissolved in solution or in form of particles, respectively. 99% of S. aureus cells died at 10 mu g/mL PDDA alone or in small or large DODAB BF/CMC/PDDA particles. The antimicrobial effect was dependent on the amount of positive charge on particles and independent of particle size. A high microbicide potency for PDDA over a range of nanomolar concentrations was disclosed. P. aeruginosa was more sensitive to all cationic assemblies than S. aureus.
Resumo:
Four species of marine benthic algae (Laurencia filiformis, L. intricata, Gracilaria domingensis and G. birdiae) that belong to the phylum Rhodophyta were collected in Espirito Santo State, Brazil and investigated concerning their biochemical composition (fatty acid, total lipid, soluble proteins, amino acid and ash). The total content of lipid (% dry weight) ranged from 1.1% to 6.2%: fatty acid from 0.7% to 1.0%: soluble protein from 4.6% to 18.3%, amino acid from 6.7% to 11.3% and ash from 22.5% to 38.4%. judging from their composition, the four species of algae appear to be potential sources of dietary proteins, amino acids, lipids and essential fatty acids for humans and animals. (C) 2009 Elsevier Ltd. All rights reserved.