42 resultados para Optical fibres -- Industrial Applications
Resumo:
The goal of this work is to study and relate electrical and optical properties of diamond-like carbon (DLC) thin films for applications in electronic devices. DLC films were deposited in a reactive RF magnetron sputtering system on p-type silicon and glass substrates. The target was a 99.9999% pure, 6 in. diameter graphite plate and methane was used as processing gas. Eight DLC films were produced for each substrate, varying deposition time, the reactor pressure between 5 mTorr and 10 mTorr while the RF power was applied at 13.56 MHz and varied between 100, 150, 200 and 250W. After deposition, the films were analyzed by I-V and C-V measurements (Cheng et al. (2004) [1]) in order to determine the electric resistivity, photo-current response and dielectric constant, optical transmittance, used to find the optical gap by the Tauc method; and by photoluminescence analysis to determine the photoemission and confirm the optical band gap. These characteristics are compared and the influence of the deposition parameters is discussed. (C) 2011 Published by Elsevier B.V.
Resumo:
In this work we present the fabrication and operation of incandescent microlamps for integrated optics applications. This microlamp emits white and infrared light from a chromium resistor embedded in a free-standing silicon oxynitride (SiO(x)N(y)) cantilever that can be coupled to an optical waveguide. In fact, the chromium resistor is sandwiched between layers of SiO(x)N(y) that isolate it from the atmosphere, while electric current heats the resistor to incandescent temperatures. The same SiO(x)N(y) material used in the microlamp fabrication is also used to produce the optical waveguides to allow a monolithic integration of light source and optical circuit. Front-side bulk micromachining of the silicon substrate in potassium hydroxide (KOH) solution is used to fabricate the cantilevers that thermally isolate the resistors from the substrate, thus reducing the heat transfer and the current required to light the lamp.
Resumo:
This work presents for the first time to our knowledge the fabrication and characterization of rib waveguides produced with PbO-GeO(2) (PGO) thin films. The target was manufactured using pure oxides ( 60 PbO-40 GeO(2), in wt%) and amorphous thin films were produced with the RF sputtering technique. PGO thin films present small absorption in the visible and in the near infrared and refractive index of similar to 2.0. The definition of the rib waveguide structure was made using conventional optical lithography followed by plasma etching, performed in a Reactive Ion Etching (RIE) reactor. Light propagation mode in the waveguide structure was analyzed using integrated optic simulation software. Optical loss measurements were performed to determine the propagation loss at 633 nm, for ribs with height of 70 nm and width of 3-5 mu m; experimental values around 2 dB/cm were found for the propagation loss and confirmed the theoretical calculations. The results obtained demonstrate that PGO thin films are potential candidates for application in integrated optics. Published by Elsevier B.V.
Resumo:
We focus this work on the theoretical investigation of the block-copolymer poly [oxyoctyleneoxy-(2,6-dimethoxy-1,4phenylene-1,2-ethinylene-phenanthrene-2,4diyl) named as LaPPS19, recently proposed for optoelectronic applications. We used for that a variety of methods, from molecular mechanics to quantum semiempirical techniques (AMI, ZINDO/S-CIS). Our results show that as expected isolated LaPPS19 chains present relevant electron localization over the phenanthrene group. We found, however, that LaPPS19 could assemble in a pi-stacked form, leading to impressive interchain interaction; the stacking induces electronic delocalization between neighbor chains and introduces new states below the phenanthrene-related absorption; these results allowed us to associate the red-shift of the absorption edge, seen in the experimental results, to spontaneous pi-stack aggregation of the chains. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 885-892, 2010
Resumo:
In this work, Ba(Zr(0.25)Ti(0.75))O(3) ceramic was prepared by solid-state reaction. This material was characterized by x-ray diffraction and Fourier transform Raman spectroscopy. The temperature dependent dielectric properties were investigated in the frequency range from 1 kHz to 1 MHz. The dielectric measurements indicated a diffuse phase transition. The broadening of the dielectric permittivity in the frequency range as well as its shifting at higher temperatures indicated a relaxor-like behaviour for this material. The diffusivity and the relaxation strength were estimated using the modified Curie-Weiss law. The optical properties were analysed by ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements at room temperature. The UV-vis spectrum indicated that the Ba(Zr(0.25)Ti(0.75))O(3) ceramic has an optical band gap of 2.98 eV. A blue PL emission was observed for this compound when excited with 350 nm wavelength. The polarity as well as the PL property of this material was attributed to the presence of polar [TiO(6)] distorted clusters into a globally cubic matrix.
Resumo:
CdS is one of the most important II-VI semiconductors, with applications in solar cells, optoelectronics and electronic devices. CdS nanoparticles were synthesized via microwave-assisted solvothermal technique. Structural and morphological characterization revealed the presence of crystalline structures presenting single phase with different morphologies such as ""nanoflowers"" and nanoplates depending on the solvent used. Optical characterization was made by diffuse reflectance and photoluminescence spectroscopy, revealing the influence of the different solvents on the optical properties due to structural defects generated during synthesis. It is proposed that these defects are related to sulfur vacancies, with higher concentration of defects for the sample synthesized in ethylene glycol in comparison with the one synthesized in ethylene diamine. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Optical spectroscopy is a noninvasive technique with potential applications for diagnosis of oral dysplasia and early cancer. In this study, we evaluated the diagnostic performance of a depth-sensitive optical spectroscopy (DSOS) system for distinguishing dysplasia and carcinoma from non-neoplastic oral mucosa. METHODS: Patients with oral lesions and volunteers without any oral abnormalities were recruited to participate. Autofluorescence and diffuse reflectance spectra of selected oral sites were measured using the DSOS system. A total of 424 oral sites in 124 subjects were measured and analyzed, including 154 sites in 60 patients with oral lesions and 270 sites in 64 normal volunteers. Measured optical spectra were used to develop computer-based algorithms to identify the presence of dysplasia or cancer. Sensitivity and specificity were calculated using a gold standard of histopathology for patient sites and clinical impression for normal volunteer sites. RESULTS: Differences in oral spectra were observed in: (1) neoplastic versus nonneoplastic sites, (2) keratinized versus nonkeratinized tissue, and (3) shallow versus deep depths within oral tissue. Algorithms based on spectra from 310 nonkeratinized anatomic sites (buccal, tongue, floor of mouth, and lip) yielded an area under the receiver operating characteristic curve of 0.96 in the training set and 0.93 in the validation set. CONCLUSIONS: The ability to selectively target epithelial and shallow stromal depth regions appeared to be diagnostically useful. For nonkeratinized oral sites, the sensitivity and specificity of this objective diagnostic technique were comparable to that of clinical diagnosis by expert observers. Thus, DSOS has potential to augment oral cancer screening efforts in community settings. Cancer 2009;115:1669-79. (C) 2009 American Cancer Society.
Resumo:
Neodymium doped yttrium aluminoborate and yttrium calcium borate glasses were prepared by the conventional melting-quenching technique with neodymium concentration varying from 0.10 to 1.0 mol%. The obtained glasses present a wide transparency in the UV-visible region (till 240 nm). The thermoluminescent (TL) emission of beta-irradiated samples was measured, showing a broad peak at similar to 240 degrees C with intensities related to the Nd(3+) content, for both glasses. Calcium borate glass samples are about one order of magnitude less luminescent than the aluminoborate glasses. Probably the presence of Ca(2+), instead of Al(3+) and Y(3+) in the matrix, inhibits the production of the intrinsic hole centers. connected to boron and oxygen, known in the literature to act as luminescent centers in TL emission of borate glasses. We suggest that Nd(3+) ions act as electron trapping centers in both glass matrices, as they modify the temperature of emission and the light intensity. Also, the Nd:YAIB glass can be used as a dosimeter in various applications, including radiotherapy. but the sensitivity of this material to neutron should be checked. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We describe the development of a label free method to analyze the interactions between Ca(2+) and the porcine S100A12 protein immobilized on polyvinyl butyral (PVB). The modified gold electrodes were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface plasmon resonance (SPR) techniques. SEM analyses of PVB and PVB-S100A12 showed a heterogeneous distribution of PVB spherules on gold surface. EIS and CV measurements have shown that redox probe reactions on the modified gold electrodes were partially blocked due the adsorption of PVB-S100A12, and confirm the existence of a positive response of the immobilized S100Al2 to the presence of calcium ions. The biosensor exhibited a wide linear response to Ca(2+) concentrations ranging from 12.5 to 200 mM. The PVB-S100A12 seems to be bound to the gold electrode surface by physical adsorption: we observed an increase of 1184.32 m degrees in the SPR angle after the adsorption of the protein on the PVB surface (in an indication that 9.84 ng of S100A12 are adsorbed per mm(2) of the Au-PVB electrode), followed by a further increase of 581.66 m degrees after attachment of the Ca(2+) ions. In addition, no SPR response is obtained for non-specific ions. These studies might be useful as a platform for the design of new reusable and sensitive biosensing devices that could find use in the clinical applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Thermal Lens Spectrometry has traditionally been carried out in the single-beam and the mode-mismatched dual-beam configurations. Recently, a much more sensitive dual-beam TL setup was developed, where the probe beam is expanded and collimated. This feature optimizes Thermal Lens (TL) signal and allows the use of thicker samples, further improving the sensitivity. In this paper, we have made comparisons between the conventional and optimized TL configurations, and presented applications such as measurements of very low absorptions and concentrations in water and Cr(III) aqueous solution in the UV-vis range. For pure water we found linear absorption coefficients as low as the Raman scattering one due to the stretching vibrational modes of OH group. The detection limit was estimated 1 x 10(-6) cm(-1) with a 180-mW excitation power using a 100-mm cell length. This sensitivity is very high, considering that water has a photothermal enhancement factor similar to 33 times smaller than CCl(4), for example. For Cr(III) species in aqueous solution, the limit of detection (LOD) was estimated in similar to 40 ng mL(-1) at 514 nm, or similar to 10ng mL(-1) at 405 nm, which is similar to 30 times smaller than the LOD achieved with conventional transmission techniques. The more recent TL configuration is very attractive to obtain absorption spectra, since the result does not depend critically on the beam parameters, unlike the other configurations. The main drawbacks of this optimized TL configuration are the longer acquisition time and the need for larger samples. (C) 2011 Published by Elsevier B.V.
Resumo:
The concern related to the environmental degradation and to the exhaustion of natural resources has induced the research on biodegradable materials obtained from renewable sources, which involves fundamental properties and general application. In this context, we have fabricated thin films of lignins, which were extracted from sugar cane bagasse via modified organosolv process using ethanol as organic solvent. The films were made using the vacuum thermal evaporation technique (PVD, physical vapor deposition) grown up to 120 nm. The main objective was to explore basic properties such as electrical and surface morphology and the sensing performance of these lignins as transducers. The PVD film growth was monitored via ultraviolet-visible (UV-vis) absorption spectroscopy and quartz crystal microbalance, revealing a linear relationship between absorbance and film thickness. The 120 nm lignin PVD film morphology presented small aggregates spread all over the film surface on the nanometer scale (atomic force microscopy, AFM) and homogeneous on the micrometer scale (optical microscopy). The PVD films were deposited onto Au interdigitated electrode (IDE) for both electrical characterization and sensing experiments. In the case of electrical characterization, current versus voltage (I vs V) dc measurements were carried out for the Au IDE coated with 120 nm lignin PVD film, leading to a conductivity of 3.6 x 10(-10) S/m. Using impedance spectroscopy, also for the Au IDE coated with the 120 nm lignin PVD film, dielectric constant of 8.0, tan delta of 3.9 x 10(-3)) and conductivity of 1.75 x 10(-9) S/m were calculated at 1 kHz. As a proof-of-principle, the application of these lignins as transducers in sensing devices was monitored by both impedance spectroscopy (capacitance vs frequency) and I versus time dc measurements toward aniline vapor (saturated atmosphere). The electrical responses showed that the sensing units are sensible to aniline vapor with the process being reversible. AFM images conducted directly onto the sensing units (Au IDE coated with 120 nm lignin PVD film) before and after the sensing experiments showed a decrease in the PVD film roughness from 5.8 to 3.2 nm after exposing to aniline.
Resumo:
In this work cassava bagasse, a by-product of cassava starch industrialization was investigated as a new raw material to extract cellulose whiskers. This by-product is basically constituted of cellulose fibers (17.5 wt%) and residual starch (82 wt%). Therefore, this residue contains both natural fibers and a considerable quantity of starch and this composition suggests the possibility of using cassava bagasse to prepare both starch nanocrystals and cellulose whiskers. In this way, the preparation of cellulose whiskers was investigated employing conditions of sulfuric acid hydrolysis treatment found in the literature. The ensuing materials were characterized by transmission electron microscopy (TEM) and X-ray diffraction experiments. The results showed that high aspect ratio cellulose whiskers were successfully obtained. The reinforcing capability of cellulose whiskers extracted from cassava bagasse was investigated using natural rubber as matrix. High mechanical properties were observed from dynamic mechanical analysis. (C) 2010 Elsevier B.V. All rights reserved.