34 resultados para Optical Emission Spectroscopy
Resumo:
Coconut water is a natural isotonic, nutritive, and low-caloric drink. Preservation process is necessary to increase its shelf life outside the fruit and to improve commercialization. However, the influence of the conservation processes, antioxidant addition, maturation time, and soil where coconut is cultivated on the chemical composition of coconut water has had few arguments and studies. For these reasons, an evaluation of coconut waters (unprocessed and processed) was carried out using Ca, Cu, Fe, K, Mg, Mn, Na, Zn, chloride, sulfate, phosphate, malate, and ascorbate concentrations and chemometric tools. The quantitative determinations were performed by electrothermal atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and capillary electrophoresis. The results showed that Ca, K, and Zn concentrations did not present significant alterations between the samples. The ranges of Cu, Fe, Mg, Mn, PO (4) (3-) , and SO (4) (2-) concentrations were as follows: Cu (3.1-120 A mu g L(-1)), Fe (60-330 A mu g L(-1)), Mg (48-123 mg L(-1)), Mn (0.4-4.0 mg L(-1)), PO (4) (3-) (55-212 mg L(-1)), and SO (4) (2-) (19-136 mg L(-1)). The principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied to differentiate unprocessed and processed samples. Multivariated analysis (PCA and HCA) were compared through one-way analysis of variance with Tukey-Kramer multiple comparisons test, and p values less than 0.05 were considered to be significant.
Resumo:
A method for the multi-elemental determination of metals (Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Sr and Zn), metalloids (B and Si), and non-metals (Cl, P and 5) in the babassu nut and mesocarp, sapucaia nut, coconut pulp, cupuassu pulp and seed, and cashew nut by axially viewed inductively coupled plasma optical emission spectrometry is presented. A diluted oxidant mixture (2 ml HNO(3) + 1 ml H(2)O(2) + 3 ml H(2)O) was used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The accuracy of the entire proposed method was confirmed by standard reference material analysis (peach leaves-NIST SRM1547). The certified values showed a good agreement at a 95% confidence limit (Student`s t-test). The average RSD for repeatability of calibration solutions measurements were in the range of 1.1-6.7%. Limits of quantification (LOQ = 10 x LOD) were in the level of 0.00072-0.0532 mg/l. The macro and micronutrient ranges in the different nuts and seeds did not exceed the dietary reference intake (DRI), except for Mn in the babassu nut. (C) 2010 Published by Elsevier Ltd.
Resumo:
The aim of this study was to develop a fast capillary electrophoresis method for the determination of inorganic cations (Na(+), K(+), Ca(2+), Mg(2+)) in biodiesel samples, using barium (Ba(2+)) as the internal standard. The running electrolyte was optimized through effective mobility curves in order to select the co-ion and Peakmaster software was used to determine electromigration dispersion and buffer capacity. The optimum background electrolyte was composed of 10 mmol L(-1) imidazole and 40 mmol L(-1) of acetic acid. Separation was conducted in a fused-silica capillary (32 cm total length and 23.5 cm effective length, 50 mu m I.D.), with indirect UV detection at 214 nm. The migration time was only 36 s. In order to obtain the optimized conditions for extraction, a fractional factorial experimental design was used. The variables investigated were biodiesel mass, pH, extractant volume, agitation and sonication time. The optimum conditions were: biodiesel mass of 200 mg, extractant volume of 200 mu L. and agitation of 20 min. The method is characterized by good linearity in the concentration range of 0.5-20 mg kg(-1) (r > 0.999), limit of detection was equal to 0.3 mg kg(-1), inter-day precision was equal to 1.88% and recovery in the range of 88.0-120%. The developed method was successfully applied to the determination of cations in biodiesel samples. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Microwave-assisted sample preparation using diluted nitric acid solutions is an alternative procedure for digesting organic samples. The efficiency of this procedure depends on the chemical properties of the samples and in this work it was evaluated by the determination of crude protein amount. fat and original carbon. Soybeans grains, bovine blood. bovine muscle and bovine viscera were digested in a cavity-microwave oven using oxidant mixtures in different acid concentrations. The digestion efficiency was evaluated based on the determination of residual carbon content and element recoveries using inductively coupled plasma optical emission spectrometry (ICP OES). In order to determine the main residual organic compounds, the digests were characterized by nuclear magnetic resonance (1 H NMR). Subsequently, studies concerning separation of nitrobenzoic acid isomers were performed by ion pair reversed phase liquid chromatography using a C18 stationary phase, water:acetonitrile:methanol (75:20:5, v/v/v) +0.05% (v/v) TFA as mobile phase and ultraviolet detection at 254 nm. Sample preparation based on diluted acids proved to be feasible and a recommendable alternative for organic sample digestion, reducing both the reagent volumes and the variability of the residues as a result of the process of decomposition. It was shown that biological matt-ices containing amino acids, proteins and lipids in their composition produced nitrobenzoic acid isomers and other organic compounds after cleavage of chemical bonds. (C) 2009 Elsevier B.V. All rights reserved.