43 resultados para Non-dominated sorting genetic algorithms
Resumo:
Transgenic Citrus sinensis (L.) Osb. cv. Hamlin plants expressing the hrpN gene were obtained by Agrobacterium tumefaciens (Smith and Towns) Conn-mediated transformation. hrpN encodes a harpin protein, which elicits the hypersensitive response and systemic acquired resistance in plants. The gene construct consisted of gst1, a pathogen-inducible promoter, a signal peptide for protein secretion to the apoplast, the selection genes nptI1 or aacC1 and the Nos terminator. The function of gst1 in citrus was evaluated in transgenic C. sinensis cv. Valencia harboring the reporter gene uidA (gus) driven by this promoter. Histochemical analysis for gus revealed that gst1 is activated in citrus leaves by both wounding and inoculation with Xanthomonas axonopodis Starr and Garces pv. citri (Hasse) Vauterin et al. Genetic transformation was confirmed by Southern blot hybridization in eight cv. Hamlin acclimatized plants. RT-PCR confirmed hrpN gene expression in seven cv. Hamlin transgenic lines before pathogen inoculation. Some hrpN transgenic lines showed severe leaf curling and abnormal growth. Six hrpN transgenic lines were propagated and evaluated for susceptibility to X axonopodis pv. citri. RT-PCR confirmed gene expression in all six hrpN transgenic lines after pathogen inoculation. Several of the hrpN transgenic lines showed reduction in susceptibility to citrus canker as compared with non-transgenic plants. One hrpN transgenic line exhibited normal vegetative development and displayed very high resistance to the pathogen, estimated as up to 79% reduction in disease severity. This is the first report of genetic transformation of citrus using a pathogen-inducible promoter and the hrpN gene. Further evaluations of the transgenic plants under field conditions are planned. Nevertheless, the evidence to date suggests that the hrpN gene reduces the susceptibility of citrus plants to the canker disease. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Cyanobacterial strains isolated from terrestrial and freshwater habitats in Brazil were evaluated for their antimicrobial and siderophore activities. Metabolites of fifty isolates were extracted from the supernatant culture media and cells using ethyl acetate and methanol, respectively. The extracts of 24 isolates showed antimicrobial activity against several pathogenic bacteria and one yeast. These active extracts were characterized by Q-TOF/MS. The cyanobacterial strains Cylindrospermopsis raciborskii 339-T3, Synechococcus elongatus PCC7942, Microcystis aeruginosa NPCD-1, M. panniformis SCP702 and Fischerella sp. CENA19 provided the most active extracts. The 50 cyanobacterial strains were also screened for the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes and microcystin production. Putative fragment genes coding for NRPS adenylation domains and PKS keto-synthase domains were successfully PCR amplified from 92% and 80% of cyanobacterial strains, respectively. The potential therapeutical compounds siderophores were detected in five cyanobacterial isolates. Microcystin production was detected by ELISA test in 26% of the isolates. Further a protease inhibitor substance was detected by LC-MS/MS in the M. aeruginosa NPLJ-4 extract and the presence of aeruginosin and cyanopeptolin was confirmed by PCR amplification using specific primers, and sequenced. This screening study showed that Brazilian cyanobacterial isolates are a rich source of natural products with potential for pharmacological and biotechnological applications. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Background: Cardiac development is a complex and multifactorial biological process. Heterozygous mutations in the transcription factor NKX2.5 are between the first evidence of a genetic cause for congenital heart defects in human beings. In this study, we evaluated the presence and frequency of mutations in the NKX2.5 gene on 159 unrelated patients with a diverse range of non-syndromic congenital heart defects (conotruncal anomalies, septal defects, left-sided lesions, right-sided lesions, patent ductus arteriosus and Ebstein`s anomaly). Methods: The coding region of the NKX2.5 locus was amplified by polymerase chain reaction and mutational analysis was performed using denaturing high performance liquid chromatography (DHPLC) and DNA sequencing. Results: We identified two distinct mutations in the NKX2.5 coding region among the 159 (1.26%) individuals evaluated. An Arg25Cys mutation was identified in a patient with Tetralogy of Fallot. The second mutation found was an Ala42Pro in a patient with Ebstein`s anomaly. Conclusions: The association of NKX2.5 mutations is present in a small percentage of patients with non-syndromic congenital heart defects and may explain only a few cases of the disease. Screening strategies considering the identification of germ-line molecular defects in congenital heart disease are still unwarranted and should consider other genes besides NKX2.5. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Tetralogy of Fallot (TOF) is a congenital conotruncal heart defect commonly found in DiGeorge (DGS) and velocardiofacial (VCFS) syndromes. The deletion of chromosome 22q11 has also been demonstrated in sporadic or familial cases of TOF. The aim of the present study was to investigate the frequency of del22q11 in patients with non-syndromic TOF seen at a tertiary Pediatric Cardiology care center. Method: One hundred and twenty three non-syndromic TOF patients were selected and evaluated by history, physical examination and review of medical records. Venous blood was drawn for genomic DNA extraction after informed consent 22q11 microdeletion diagnosis was conducted through a standardized SNP genotyping assay and consecutive homozygosity mapping. Phenotype-genotype correlations regarding cardiac anatomy were conducted. Results: We evaluated 123 non-syndromic TOF patients for a 22q11 deletion. 105 (85.4%) patients presented pulmonary stenosis and 18 (14.6%) had pulmonary atresia. Eight patients (6.5%) were found to have a deletion. Of the deleted patients, three (37.5%) presented pulmonary atresia. We have verified a tendency towards a higher prevalence of pulmonary atresia when comparing TOF patients with and without 22q11 microdeletion. Conclusions: 22q11.2 deletion in non-syndromic TOF patients is present in approximately 6% of patients. We suggest a tendency towards a higher prevalence of pulmonary atresia in non-syndromic TOF patients with 22q11 microdeletion. Molecular genetic screening of non-syndromic TOF patient may be important for the correct care of these patients and a more specific genetic diagnostic and counseling. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background and Aims: Although the metabolic risk factors for non-alcoholic fatty liver disease (NAFLD) progression have been recognized, the role of genetic susceptibility remains a field to be explored. The aim of this study was to examine the frequency of two polymorphisms in Brazilian patients with biopsy-proven simple steatosis or non-alcoholic steatohepatitis (NASH): -493 G/T in the MTP gene, which codes the protein responsible for transferring triglycerides to nascent apolipoprotein B, and -129 C/T in the GCLC gene, which codes the catalytic subunit of glutamate-cystein ligase in the formation of glutathione. Methods: One hundred and thirty-one biopsy-proven NAFLD patients (n = 45, simple steatosis; n = 86, NASH) and 141 unrelated healthy volunteers were evaluated. Genomic DNA was extracted from peripheral blood cells, and the -129 C/T polymorphism of the GCLC gene was determined by restriction fragment length polymorphism (RFLP). The -493 G/T polymorphism of the MTP gene was determined by direct sequencing of the polymerase chain reaction products. Results: The presence of at least one T allele in the -129 C/T polymorphism of the GCLC gene was independently associated with NASH (odds ratio 12.14, 95% confidence interval 2.01-73.35; P = 0.007), whereas, the presence of at least one G allele in the -493 G/T polymorphism of the MTP gene differed slightly between biopsy-proven NASH and simple steatosis. Conclusion: This difference clearly warrants further investigation in larger samples. These two polymorphisms could represent an additional factor for consideration in evaluating the risk of NAFLD progression. Further studies involving a larger population are necessary to confirm this notion.
Resumo:
Atypical enteropathogenic Escherichia coli (aEPEC) has been associated with infantile diarrhea in many countries. The clonal structure of aEPEC is the object of active investigation but few works have dealt with its genetic relationship with other diarrheagenic E. coli (DEC). This study aimed to evaluate the genetic relationship of aEPEC with other DEC pathotypes. The phylogenetic relationships of DEC strains were evaluated by multilocus sequence typing. Genetic diversity was assessed by pulsed-field gel electrophoresis (PFGE). The phylogram showed that aEPEC strains were distributed in four major phylogenetic groups (A, B1, B2 and D). Cluster I ( group B1) contains the majority of the strains and other pathotypes [enteroaggregative, enterotoxigenic and enterohemorrhagic E. coli ( EHEC)]; cluster II ( group A) also contains enteroaggregative and diffusely adherent E. coli; cluster III ( group B2) has atypical and typical EPEC possessing H6 or H34 antigen; and cluster IV ( group D) contains aEPEC O55:H7 strains and EHEC O157:H7 strains. PFGE analysis confirmed that these strains encompass a great genetic diversity. These results indicate that aEPEC clonal groups have a particular genomic background - especially the strains of phylogenetic group B1 that probably made possible the acquisition and expression of virulence factors derived from non-EPEC pathotypes.
Resumo:
Linkage studies have identified the human leukocyte antigen (HLA)-DRB1 as a putative rheumatoid arthritis (RA) susceptibility locus (SL). Nevertheless, it was estimated that its contribution was partial, suggesting that other non-HLA genes may play a role in RA susceptibility. To test this hypothesis, we conducted microarray transcription profiling of peripheral blood mononuclear cells in 15 RA patients and analyzed the data, using bioinformatics programs (significance analysis of microarrays method and GeneNetwork), which allowed us to determine the differentially expressed genes and to reconstruct transcriptional networks. The patients were grouped according to disease features or treatment with tumor necrosis factor blocker. Transcriptional networks that were reconstructed allowed us to identify the interactions occurring between RA SL and other genes, for example, HLA-DRB1 interacting with FNDC3A (fibronectin type III domain containing 3A). Given that fibronectin fragments can stimulate mediators of matrix and cartilage destruction in RA, this interaction is of special interest and may contribute to a clearer understanding of the functional role of HLA-DRB1 in RA pathogenesis.
Resumo:
Objectives Alterations in the enzymes involved in homocysteine (Hcy) metabolism or vitamin deficiency could play a role in coronary artery disease (CAD) development. This study investigated the influence of MTHFR and MTR gene polymorphisms, plasma folate and MMA on Hcy concentrations and CAD development. MMA and folate concentrations were also investigated according to the polymorphisms. Methods Two hundred and eighty-three unrelated Caucasian individuals undergoing coronary angiography (175 with CAD and 108 non-CAD) were assessed in a case-control study. Plasma Hcy and MMA were measured by liquid chromatography/tandem mass spectrometry. Plasma folate was measured by competitive immunoassay. Dietary intake was evaluated using a nutritional questionnaire. Polymorphisms MTHFR and MTR were investigated by polymerase chain reaction (PCR) followed by enzyme digestion or allele-specific PCR. Results Hcy mean concentrations were higher in CAD patients compared to controls, but below statistical significance (P = 0.246). Increased MMA mean concentrations were frequently observed in the CAD group (P = 0.048). Individuals with MMA concentrations > 0.5 mu mol/l (vitamin B(12) deficiency) were found only in the CAD group (P = 0.004). A positive correlation between MMA and Hcy mean concentrations was observed in both groups, CAD (P = 0.001) and non-CAD (P = 0.020). MMA mean concentrations were significantly higher in patients with hyperhomocysteinemia in both groups, CAD and non-CAD (P = 0.0063 and P = 0.013, respectively). Folate mean concentration was significantly lower in carriers of the wild-type MTHFR 1298AA genotype (P = 0.010). Conclusion Our results suggest a correlation between the MTHFR A1298C polymorphism and plasma folate concentration. Vitamin B(12) deficiency, reflected by increased MMA concentration, is an important risk factor for the development both of hyperhomocysteinemia and CAD.
Resumo:
Concurrent deletion at 1p/19q is a common signature of oligodendrogliomas, and it may, be identified in low-grade tumours (grade II) suggesting it represents an early event in the development of these brain neoplasms. Additional non-random changes primarily involve CDKN2A, PTEN and EGFR. Identification of all of these genetic changes has become an additional parameter in the evaluation of the clinical patients` prognosis, including good response to conventional chemotherapy. Multiple ligation-dependent probe amplification (MLPA) analysis is a new methodology that allows an easy identification of the oligodendrogliomas` abnormalities in a single step. No need of the respective constitutional DNA from each patient is another advantage of this method. We used MLPA kits P088 and P105 to determine the molecular characteristics of a series of 40 oligodendrogliomas. Deletions at I p and 19q were identified in 45% and 65% of cases, respectively. Alterations of EGFR, CDKN2A, ERBB2, PTEN and TP53 were also identified in variable frequencies among 7% to 35% of tumours. These findings demonstrate that MLPA is a reliable technique to the detection of molecular genetic changes in oligodendrogliomas.
Resumo:
P>Age at first calving (AFC) measures the entry of heifers into the beef cattle production system. This trait can be used as a selection criterion for earlier reproductive performance. Using data from Nelore cattle participating in the `Program for Genetic Improvement of the Nelore Breed` (PMGRN-Nelore Brazil), bi-trait analyses were performed using the restricted maximum likelihood method, based on an AFC animal model and the following traits: female body weight adjusted to 365 (BW365) and 450 (BW450) days of age, and male scrotal circumference adjusted to 365 (SC365), 450 (SC450), 550 (SC550) and 730 (SC730) days of age. The heritability estimates for AFC ranged from 0.02 +/- 0.02 to 0.04 +/- 0.02. The estimates of additive direct heritabilities (with standard error) for BW365, BW450, SC365, SC450, SC550 and SC730 were 0.36 +/- 0.07, 0.38 +/- 0.07, 0.48 +/- 0.07, 0.65 +/- 0.07, 0.64 +/- 0.07 and 0.42 +/- 0.07, respectively, and the genetic correlations with AFC were -0.38, -0.33, 0.10, -0.13, -0.13 and 0.06, respectively. In the herds studied, selection for SC365, SC450, SC550 or SC730 should not cause genetic changes in AFC. Selection based on BW365 or BW450 would favor smaller AFC breeding values. However, the low magnitude of direct heritability estimates for AFC in these farms indicates that changes in phenotypical expression depend mostly on non-genetic factors.
Resumo:
Systemic lupus erythematosus (SLE) is an autoimmune disorder of the connective tissue with a wide and heterogeneous spectrum of manifestations, with renal and neurological involvement usually related to worse prognosis. SLE more frequently affects females of reproductive age, and a high prevalence and renal manifestation seem to be associated with non-European ethnicity. The present study aims to investigate candidate loci to SLE predisposition and evaluate the influence of ethnic ancestry in the disease risk and clinical phenotypic heterogeneity of lupus at onset. Samples represented by 111 patients and 345 controls, originated from the city of Belem, located in the Northern Region of Brazil, were investigated for polymorphisms in HLA-G, HLA-C, SLC11A1, MTHFR, CASP8 and 15 KIR genes, in addition to 89 Amerindian samples genotyped for SLC11A1. We also investigated 48 insertion/deletion ancestry markers to characterize individual African, European and Amerindian ancestry proportions in the samples. Predisposition to SLE was associated with GTGT deletion at the SLC11A1 3`UTR, presence of KIR2DS2 +/KIR2DS5 +/KIR3DS1 + profile, increased number of stimulatory KIR genes, and European and Amerindian ancestries. The ancestry analysis ruled out ethnic differences between controls and patients as the source of the observed associations. Moreover, the African ancestry was associated with renal manifestations. Lupus (2011) 20, 265-273.
Resumo:
Conventional procedures employed in the modeling of viscoelastic properties of polymer rely on the determination of the polymer`s discrete relaxation spectrum from experimentally obtained data. In the past decades, several analytical regression techniques have been proposed to determine an explicit equation which describes the measured spectra. With a diverse approach, the procedure herein introduced constitutes a simulation-based computational optimization technique based on non-deterministic search method arisen from the field of evolutionary computation. Instead of comparing numerical results, this purpose of this paper is to highlight some Subtle differences between both strategies and focus on what properties of the exploited technique emerge as new possibilities for the field, In oder to illustrate this, essayed cases show how the employed technique can outperform conventional approaches in terms of fitting quality. Moreover, in some instances, it produces equivalent results With much fewer fitting parameters, which is convenient for computational simulation applications. I-lie problem formulation and the rationale of the highlighted method are herein discussed and constitute the main intended contribution. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 113: 122-135, 2009
Resumo:
In 2006 the Route load balancing algorithm was proposed and compared to other techniques aiming at optimizing the process allocation in grid environments. This algorithm schedules tasks of parallel applications considering computer neighborhoods (where the distance is defined by the network latency). Route presents good results for large environments, although there are cases where neighbors do not have an enough computational capacity nor communication system capable of serving the application. In those situations the Route migrates tasks until they stabilize in a grid area with enough resources. This migration may take long time what reduces the overall performance. In order to improve such stabilization time, this paper proposes RouteGA (Route with Genetic Algorithm support) which considers historical information on parallel application behavior and also the computer capacities and load to optimize the scheduling. This information is extracted by using monitors and summarized in a knowledge base used to quantify the occupation of tasks. Afterwards, such information is used to parameterize a genetic algorithm responsible for optimizing the task allocation. Results confirm that RouteGA outperforms the load balancing carried out by the original Route, which had previously outperformed others scheduling algorithms from literature.